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 Abstract 

 
The high cost of rocket technology has led to system reusability developments, particularly 

in the field of first stage rockets. With the motivation of decreasing production costs, 

successful vertical rocket landing attempts by SpaceX and Blue Origin have led the path 

for autonomous recovery and reusability of rocket engines. Such a feat can only be 

accomplished by complex control algorithms executing in real-time aboard the rocket. This 

project aims to develop a vertical rocket landing simulation environment where algorithms 

based on classical control and machine learning can be designed and evaluated.  

 

After developing the simulated environment in Python using a robust physics engine known 

as Box2D, two control algorithms were designed; once classical control method and the 

other from the optimal control domain. The classical control Proportional Integral 

Derivative (PID) controller served as a benchmark, whereas Model Predictive Control 

(MPC) makes use of an optimizer to find the best performing action to take based on an 

objective function. Two Reinforcement Learning algorithms were then designed with the 

aim of automatically developing the required control without explicitly defining the 

dynamics of the system. These methods, known formally as Function Approximation Q-

Learning and Deep Deterministic Policy Gradients (DDPG) provided a contrasting 

approach to the PID and MPC controllers. While the classical controllers achieve 

acceptable performance, the Artificial Intelligent counterparts, specifically the DDPG 

converged to a more stable and consistent rocket landing. 
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1 Introduction 
 

This project concerns itself with the multidisciplinary subject of reusable space 

systems, specifically first stage rockets. Vertical take-off and landing (VTOL) of a 

rocket is a very primitive field which exploits the reusability of the launch vehicle 

used to transport highly valuable payloads, such as satellites, into space. Work on 

reusable launch systems is motivated by economic and material reasons; a significant 

cost reduction is attained by reusing the first stage rocket hardware [1], [2]. On top 

of this, improved scalability, as well as increased launch frequency are two positive 

by-products of this reusability. 

 

Since the subject of VTOL of a rocket is still in its infancy, there is very little to no 

published material on specific topics, such as control methods used. Moreover, these 

industries are subject to sensitive military information which prevents any 

publications. Therefore, some references to exemplary non-technical methods and 

plans are made from respectable leaders in the industry who spearheaded the subject, 

such as Space Exploration Technologies Corporation (SpaceX).  

 

The first successful relaunch of a previously used rocket was performed by SpaceX 

with the Falcon 9 rocket [3] on March 30th, 2017. It is important to point out that not 

the entire rocket is reused. As an example, SpaceX’s Falcon 9 rocket is made up of 

two main stages [4], excluding the payload that fits on top of the second stage. The 

first stage houses the clustered rocket engines as well as the aluminium-lithium alloy 

tanks, whereas the second stage contains a single engine to drive the payload to the 

desired orbit. After separation, the first stage is propelled back to earth in a controlled 

manner as shown in Figure 1 [1]. 
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The focus of this thesis was on the very last stage: designing controllers to land the 

rocket on the barge with the main firing engine without exceeding any hardware 

limits or running out of fuel. In other words, this work assumed that all previous 

stages of the rocket were successful and that the rocket was guided to within 

reasonable proximity (≈ 200 meters) of the landing area, having a relative downward 

velocity similar to that experienced in real life. 

 

Tests conducted by SpaceX and Blue Origin [5] successfully show the use of the 

main engine, grid fins as well as cold gas Nitrogen thrusters to land the first stage 

rockets, each used to a different extent and in different stages. Gimbaled thrust [6] is 

also used as part of the control. Together with the main and side thrusters, gimbaled 

thrust will form the backbone of the mathematical model of the rocket in this thesis.  

1.1 Objectives and Contributions 
 

The main objective of the project is to design and compare classical and optimal 

control algorithms with machine learning algorithms with increasing sophistication. 

Since designing stable closed loop controllers for non-linear and multivariable 

systems is non-trivial, the Artificial Intelligence (AI) approach represents an 

unsupervised way to tackle such complex problems. To this end, two control 

approaches, as well as two AI approaches were designed and implemented. 

 

Before designing any controller, a vertical rocket simulation environment was 

developed in Python 3.5 using the physics engine Box2D [7]. This environment 

allows for not just landing simulations, but also launches and trajectory tracking. 

Therefore, contributions from this thesis include: 

• Simulation environment in Python 3.5 

• Implementation of: 

o Proportional Integral Derivative (PID) controller 

o Model Predictive Control (MPC) method on the linearized problem 

o Linear function approximation Q-Learning controller 

o Deep Deterministic Policy Gradient (DDPG) controller 

• A thorough comparison between methods from both domains. 

The rest of the thesis is organized as follows: Section 2 presents related work done 

on some of the control algorithms that are explored, as well as important rocket 

related details that must be addressed. Section 3 gives a brief overview of the 

developed simulation environment. Section 4 presents the problem as well as 

technical background on the algorithms that were adopted. It also describes the 

methodology of the models and establishes the baseline that was implemented for 

the rest of the models to be compared with. This is followed by the evaluation and 

comparison with the improvements and conclusion drawing final remarks in 

Sections 6 and 7 respectively. 
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1.2 Problem Definition 
 

Consider Figure 2 below, illustrating the rocket landing on a barge. 

 

Let 

 

𝐹𝐸 = 𝑀𝑎𝑖𝑛 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐹𝑜𝑟𝑐𝑒 

𝐹𝑅 = 𝑅𝑖𝑔ℎ𝑡 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐹𝑜𝑟𝑐𝑒 

𝐹𝐿 = 𝐿𝑒𝑓𝑡 𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝐹𝑜𝑟𝑐𝑒 

𝐹𝑆 = 𝐹𝐿 − 𝐹𝑅 

𝜃 = 𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑧 − 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑐𝑘𝑒𝑡 

𝜑 = 𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑁𝑜𝑧𝑧𝑙𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑐𝑘𝑒𝑡 

𝑙1 = 𝐿𝑜𝑛𝑑𝑖𝑔𝑢𝑡𝑑𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 (𝐶𝑂𝐺) 𝑎𝑛𝑑 𝐹𝐸 

𝑙2 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐶𝑂𝐺 𝑎𝑛𝑑 𝐹𝑅 , 𝐹𝐿 

𝑙𝑛 = 𝑁𝑜𝑧𝑧𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑚 = 𝑅𝑜𝑐𝑘𝑒𝑡 𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 + 𝐹𝑢𝑒𝑙 𝑀𝑎𝑠𝑠 

𝑥 = 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑜𝑐𝑘𝑒𝑡 

𝑧 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑜𝑐𝑘𝑒𝑡 

𝛼 = 𝑅𝑒𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Figure 2 Vertical Rocket Landing Model 
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As explained in the introduction, the main controls of the rocket are the: 

• Main engine thrust, 𝐹𝐸 

• Side Nitrogen gas thrusters, 𝐹𝐿 , 𝐹𝑅 

o Summarized in a single input 𝐹𝑆 = 𝐹𝐿 − 𝐹𝑅 

• Nozzle angle, ϕ. 

The objective is to land the rocket in a controlled manner such that the final state of 

the rocket at landing is as close to a target state as possible. This will later be defined 

numerically in a utility function. The inputs, defined as 𝑢 = [𝐹𝐸 , 𝐹𝑆, 𝜑] have the 

following constraints: 

 

0 𝑁 ≤ 𝐹𝐸 ≤ 6486 𝑁 

−130 𝑁 ≤ 𝐹𝑆 ≤ 130 𝑁 

−15𝑜 ≤ 𝜑 ≤ 15𝑜 

 

These constraints are scaled (1:30) estimates for the first stage rocket of Falcon 9 

during landing [4], [8]. Except for the position of the center of gravity (COG), the 

simulation was developed to reflect real life conditions where possible, including 

dimensions and force magnitudes. In the simulation, the COG was higher than in 

real rockets, making control harder. 

 

Let the state of the rocket dynamics at any time be defined by 𝒙𝒊 =

[𝑥𝑖, 𝑥̇𝑖, 𝑧𝑖 , 𝑧̇𝑖 , 𝜃𝑖, 𝜃̇𝑖] and the final state by 𝒙𝝉. For a successful landing, 𝒙𝝉 must be 

within the following numerical thresholds, defined by 𝒙𝝉𝒎𝒂𝒙
: 

 

−𝐿𝑒𝑓𝑡 𝐵𝑎𝑟𝑔𝑒 𝐸𝑑𝑔𝑒 ≤ 𝑥𝜏 ≤ 𝑅𝑖𝑔ℎ𝑡 𝐵𝑎𝑟𝑔𝑒 𝐸𝑑𝑔𝑒 

−2 𝑚/𝑠 ≤ 𝑥̇𝜏 ≤ 2 𝑚/𝑠 

𝑧𝜏 = 𝐵𝑎𝑟𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 

𝑧̇𝜏 = 0 𝑚/𝑠 

−10𝑜 ≤ 𝜃𝜏 ≤ 10𝑜 

−2𝑜/𝑠 ≤ 𝜃̇𝜏 ≤ 2𝑜/𝑠 

 

Therefore, a cost can be imposed on the final state, defined as: 

 

𝐽 = 𝜔𝑇(𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥+) 

 

where 𝜔 is a 6 ×1 weighting matrix and 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is the desired final state. This 

formally defines a successful landing, such that 𝐽  lies within a threshold. The closer 

𝐽 is to 0, the better the landing. The cost associated with the states will be formally 

defined in Section 5.2. 
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2 Background 
 

Vertical rocket landing has only been practically explored in the last few years. 

Given that this is a multidisciplinary topic, a brief background on thrust vectoring, 

different aspects of the rocket, the barge, and control methods is necessary, with 

special attention given to the latter. 

2.1 Launch Vehicle Reuse 
 

The motivations of launch vehicle re-use are two-fold: saving of the first stage engine 

and structure leading to significant economic savings. However, there can be 

different types of recovery systems, dependent on the type of launch vehicle. Ragab 

et al. [9] review the different techniques used. They highlight that propellant and 

gases contribute less than 5% of the first stage cost of the rocket, further cementing 

the argument for recovery. However, they do mention that simpler recovery, such as 

with the use of parachutes, is more cost effective than booster fly back. At the same 

time, the landing accuracy of simpler methods is measured in miles, whereas with 

vertical rocket landing it is measured in meters. 

 

After separation of the first and second stages, reduction of translational velocity is 

necessary. Blue Origin achieves this both passively with brake fins, as well as 

actively by re-starting the main engine, powered by liquid Hydrogen and liquid 

Oxygen [5]. On the other hand, Falcon 9 uses its grid fins for re-entry 

manoeuvrability before switching on its engines again [4]. It also achieves 

controllability using main engine gimballing and cold gas Nitrogen thrusters [8]. The 

latter two are included in this project’s mathematical model as illustrated in Figure 

2. 

 

2.2 Thrust Vector Control 
 

Thrust vectoring will be the main control method to keep 𝜃 as close to 0𝑜 as possible, 

keeping the rocket upright whilst still following a reference trajectory. Vectoring 

refers to the gimballing action of the engine or the flexibility of the nozzle, where 

the nozzle direction is changed relative to the COG of the rocket. Since the direction 

of the nozzle dictates the angle at which thrust is exerted, a torque about the COG is 

created if 𝜑 ≠ 0 as shown in Figure 3 [10]. In reality, the nozzle is moved along 3-

dimensions with actuators. Since the simulation developed in this thesis is in 2-

dimensions, only a single rotational movement is needed. 
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The nozzle itself can take many forms, and the generated thrust magnitude and 

profile are directly dependent on the shape of the nozzle. Thrust reduction and 

increased wake turbulence can result from a sub-optimal nozzle profile [6], [11], 

however, this project will assume ideal thrust profiles utilizing a single flexible 

nozzle joint [9]. Hence, the gimbal can be represented by a rotary ball joint at the 

lower end of the rocket. The flow of the thrust will be assumed to act along a single 

directional vector, 𝐹𝐸. 

2.3 The Landing Site 
 

Simple recovery methods with parachutes were used to collect launch vehicles from 

the ocean, however, no first stage rocket had landed on an ocean barge before. Falcon 

9 successfully did this on April 18th, 2014 [12] in a historic landing.  

 

The rocket’s take-off location is usually from the east coast of the United States, 

having an abundance of area away from civilization. However, if the first stage is to 

be recovered, not enough fuel can be carried by the rocket for the first stage to make 

it back to land. Even then, it would be a dangerous endeavour. For this reason, 

SpaceX opted to use a floating platform in the Pacific Ocean. 

 

The barge’s landing area measures approximately 74 by 52 meters and is navigated 

with 4 diesel-powered thrusters and a Global Positioning System for self-navigation 

[13]. Given this setting, landing a rocket on a self-navigated barge presents a control 

problem on its own, especially since sudden weather changes can cause disturbances 

in the barge’s position and angle. For this reason, the floating platform’s position 

and angle relative to the horizontal plane are variables in the simulation and can be 

adjusted for testing purposes and included in the mathematical model. 

Figure 3 Thrust Vector Control of a Rocket [10] 
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2.4   Control Algorithms 
 

Closed-loop control systems [14] are the pivot on which such landings are made 

possible. Both classical control and Artificial Intelligence (AI) techniques rely on 

state variables to analyze the error with respect to an ideal state and execute 

corrective measures. A controller’s job is to perform these actions in a stable and 

controlled manner. 

 

In classical control, these states must be bound by a well-defined mathematical 

model, whereas in AI input variables are defined loosely since the method has no 

knowledge of what the variables represent. This underlines the difference in the 

approaches of creating a controller. Classical control follows a set of rules and 

known methodology that have been widely used and tested, whereas AI techniques, 

such as Reinforcement Learning (RL), are less structured. 

 

This section introduces the background required for understanding the material from 

both domains. 

 

2.4.1 System Representation 
 

The design of classical controllers requires a model to be defined in a certain 

standardized format. In control theory, functions known as transfer functions are 

used to characterize the input-output relationships of the system defined by 

differential equations [15]. 

 

Consider a linear time-invariant system defined by the following differential 

equation: 

 

𝑎𝑜

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯+ 𝑎𝑛𝑦 = 𝑏𝑜

𝑑𝑚𝑥

𝑑𝑡𝑚
+ 𝑏1

𝑑𝑚−1𝑥

𝑑𝑡𝑚−1
+ ⋯+ 𝑏𝑚𝑥 

 

Where 𝑛 ≥ 𝑚, 𝑦 is the output of the system, 𝑥 is the input and 𝑎𝑜…𝑛, 𝑏𝑜…𝑚 are their 

respective coefficients. The transfer function of the system is defined as the ratio of 

the Laplace transform of the output to the input under zero initial conditions. 

Formally: 

𝐺(𝑠) =  
ℒ[𝑜𝑢𝑡𝑝𝑢𝑡]

ℒ[𝑖𝑛𝑝𝑢𝑡]
 |

𝑧𝑒𝑟𝑜 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 

=
𝑌(𝑠)

𝑋(𝑠)
 

= 
𝑏𝑜𝑠

𝑚 + 𝑏1𝑠
𝑚−1 + ⋯+ 𝑏𝑚

𝑎𝑜𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋯+ 𝑎𝑛
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The Laplace transform is a convenient operation that allows the input-output 

relationship to be represented algebraically. A typical closed loop Single Input 

Single Output (SISO) system can be represented as shown in Figure 4. 

 

 

As complexity increases, systems typically become Multiple Input Multiple Output 

(MIMO) problems, at which point such a representation becomes too limiting. 

Therefore, the linearized mathematical model in this project is represented in state 

space form [16]. 

 

The state vector was previously defined as 𝑥 whilst the input vector was defined as 

𝑢. Using state space, the dynamics of a linear system can be calculated for any time 

𝑡 ≥ 𝑡𝑜. The system can be defined by: 

 

𝑆𝑡𝑎𝑡𝑒𝑠: 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚] 

𝐼𝑛𝑝𝑢𝑡: 𝑢 = [𝑢1, … , 𝑢𝑟] 
 

𝑥̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) 

𝑦(𝑡) = 𝑔(𝑥, 𝑢, 𝑡) 

 

If the system is non-linear, as is the rocket VTOL, then it must be linearized about 

an operating point using Taylor series expansion [17]. Otherwise, it can be written 

directly in the following shorthand notation: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

 

Where 𝑨 is the state matrix, 𝑩 is the input matrix, 𝑪 is the output matrix and 𝑫 is the 

direct transmission matrix, which is usually 0. State space allows for a concise 

representation of a system, exposing all the dynamic relationships in well-defined 

matrices. Moreover, whereas Figure 4 models a SISO system, state feedback can be 

used by designing a 𝐾 matrix that together with a reference state commands the plant 

Feedback 

H(s) 

Plant Transfer 

Function 

G(s) 

Controller + 
_ 

E(s), error 

R(s), reference 

input C(s), output 

B(s), feedback signal 

Figure 4 Single Input Single Output Closed-Loop System 

U(s) 
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through its input as shown in Figure 5. The SISO model in Figure 4 was used to 

implement 3 decoupled PIDs to control 𝑢 in the benchmark model and is outlined in 

Section 4.2. State feedback was used for more advanced optimal control as shown in 

Section 4.3. 

 

2.4.2 Proportional Integral Derivative Controller 
 

A Proportional Integral Derivative (PID) controller is an intuitive controller that is 

suitable for SISO systems shown in Figure 4. The PID is a simple yet effective 

controller that computes the proportional, integral and derivative of the difference 

between the output and the reference input (error) and outputs a control signal 

depending on the defined PID coefficients [18]. The input-output relationship is 

defined as: 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

 

Taking the Laplace transform leads to: 

 

𝐸(𝑠)

𝑈(𝑠)
=

𝑠

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖
 

 

Fine-tuning of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 has been refined in the continuous time domain, 

frequency domain, and even discrete time domain. These parameters are designed 

based on the desired response to a step input. The response is characterised by the 

rise time, settling time, bandwidth and overshoot. Well-known methods for tuning 

are the Ziegler-Nichols rules [19] and root locus [20]. A system may require certain 

timing and damping characteristics which impose design criteria during the design 

+ 
+ 

-K 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 
𝒚 = 𝑪𝒙 + 𝑫𝒖 

+ 
+ 

𝒆, error 

𝒓, reference 

state 𝒚, output 𝒖, input 

𝒙 

𝒅, disturbance 

Figure 5 State feedback system. The state vector x is used together with the reference state to control 

the plant. The disturbance, d, can manifest itself at any point in the process but is shown in the 

feedforward loop. 
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process. As an example, it is imperative that a chemical process does not experience 

any overshoots, but must be critically damped. 

 

A second order system is typically used as an approximation for many systems 

because of its balance between complexity and ease of design. The following transfer 

function represents a closed-loop second order system: 

 

𝐺(𝑠) =
𝐾𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 

 

Where 𝜔𝑛 is the natural frequency of the system and 𝜁 is the damping factor. Yang 

et al. [21] designed a second order PID controller calibrated by trial and error on a 

thrust vectored nozzle. The authors also highlight the effect that the individual PID 

constants have on the system, particularly stressing the need to balance the transient 

response with steady-state errors and oscillations. 

 

The proportional term, 𝐾𝑝 tends to make short transients and caters for the present 

error as well as to decrease the steady state error. The integral term allows for the 

elimination of steady state errors but increases the order of the system, potentially 

rendering it unstable. On the other hand, 𝐾𝑑 leads to faster rise times and increases 

the system’s bandwidth. The PID is used as a benchmark controller in this project 

and the design is described in detail in Section 4.2. 

 

2.4.3 Optimal Control 
 

Even though the PID is widely used to control simple systems, it does not guarantee 

optimal control or stability. Furthermore, problems with coupled variables and 

MIMO systems increase the complexity and make the manual-tuning of a PID a 

naïve approach. To this end, the field of optimal control is introduced. The Linear 

Quadratic Regulator (LQR) and MPC are two such controllers in this field. In this 

project, LQR was used as a stepping stone for MPC. 

 

As opposed to manual tuning of constants, optimal controllers minimize a cost 

function with constraints associated with the state and input in order to iteratively 

compute the optimal control strategy. A general optimization problem takes the 

following form [22]: 

 

    

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓(𝑥) 

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚 

𝑔𝑖(𝑥) = 0, 𝑖 = 1,… , 𝑝 
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Where 𝑓(𝑥) represents the objective function and the constraints represent inequality 

and equality constraints respectively. This is a convex program if the objective 

function and constraints are both convex, satisfying the inequality: 

 

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦) 

 

Not all problems are solved equally; different classes of optimization problems, such 

as least squares, linear programs or quadratic programs may use different optimizers 

to obtain a solution using the least amount of computing power. Moreover, non-

convex problems require more time to ignore local optima and reach a global 

solution [22]. 

2.4.4 Linear Quadratic Regulator 
 

For a model given by 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, the LQR seeks to find a feedback matrix −𝐾 

that leads to optimal control by minimizing a quadratic cost defined as 𝐽 =

 ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
𝜏

0
+ 𝑥𝜏

𝑇𝑄𝜏𝑥𝜏 [23] where 𝑄 ≽ 0, 𝑄𝜏 ≽ 0 and  𝑅 ≻ 0 (positive 

semi-definite and positive definite respectively). The symmetric matrix 𝑄𝜏 

represents the cost given to the final state. 

 

𝑄 represents the penalty given to the distance between the state and target, whilst 𝑅 

is the penalty paid to execute the actions. Therefore, 𝐽 represents a trade-off between 

state accuracy and action penalty [24]. Low values of 𝑅 indicate that the controller 

has more flexibility in executing the actions. Moreover, 𝑄 and 𝑅 must be balanced 

to achieve the required transient response as well as steady state error, a process 

requiring a certain degree of trial and error [23]. 

 

Note that this method requires a linear system. This suggests that the matrix 𝐾 can 

be found analytically to achieve the feedback control law 𝑢 =  −𝐾𝑥. In fact, there 

are many ways to derive 𝐾, most notably the dynamic programming approach. By 

differentiating  𝐽 with respect to 𝑢 over a single time step, the following solution is 

derived for the continuous time case: 

 

𝑢 =  −𝑅−1𝐵𝑇𝑃𝑡𝑥 

 

Where 𝑃𝑡 is the solution of the algebraic Riccati equation [23]. It can be shown that 

this solution achieves desirable control characteristics and robustness [25]. Note that 

a distinction must be made between continuous and discrete time LQR, since they 

lead to slightly different solutions. 

 

Mohammadbagheri et al. [18] compare PID and LQR controllers on voltage-source 

inverters and concluded that the rise time as well as settling time of LQR controllers 

were superior to those of the simple PID. Kumar et al. [26] also design robust LQR 

controllers for both stabilizing the inverted pendulum and trajectory tracking to a 
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reference input. Note that the inverted pendulum model is not that far from the rocket 

landing problem, on the contrary, the mathematical models are very similar since 

both tend to naturally unstable equilibrium positions. The authors showed that LQR 

can optimize even with the most stringent of parameters. 

 

The disadvantage of LQR is that the optimal feedback is independent of constraints. 

This poses a problem in processes such as the rocket landing, where all inputs are 

bounded. The problem can be redefined to include constraints, but more advanced 

methods, such as MPC, cater for such an issue. 

2.4.5 Model Predictive Control 
 

MPC is a relatively new field in control that has only been proven useful thanks to 

the increased computational power. However, it found widespread use in industry; 

from precision landings [27] to trajectory planning in missiles [28]. Like LQR, MPC 

solves a quadratic program by minimizing an objective function. However, unlike 

LQR, it includes equality and inequality constraints, and the linearized plant 

dynamics form part of these constraints. This enables the optimizer to find a solution 

that is optimal for not just the present state, but also future states. The extent of 

predictability is referred to as the time horizon. A generalized convex quadratic MPC 

program takes the following form [29]: 

 

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial state and 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 represents the target state at the end of 

the time horizon 𝑇ℎ. This constrains the problem to converge to a desired final state. 

Note that the problem can be restructured in many ways, and the choice of the utility 

function, cost matrices, constraints, linearization, control horizon, prediction 

horizon, sampling interval and error tolerance should be treated as hyper parameters. 

As an example, the penalization of the control action 𝑢𝑡
𝑇𝑅𝑢𝑡 in 𝐽 causes the objective 

function to have a non-zero value even under steady state conditions, where 𝑢𝑡 might 

not be zero for proper control action. Meadows et al. [30] propose to penalize the 

change in actions, ∆𝑢, instead. Garcia et al. [31] noted that a large sampling interval 

causes oscillations and suggest that only the present resulting action 𝑢𝑡𝑖
 is used, and 

to resolve the problem again at (𝑡𝑖 + 1) using the new state. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  ෍ (𝑥𝑡
𝑇

𝑡𝑖+𝑇ℎ

𝑡=𝑡𝑖

𝑄𝑥𝑡 + 𝑢𝑡
𝑇𝑅𝑢𝑡) 

𝑢𝑡 ∈ U, 𝑥𝑡 ∈ X 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 
𝑥𝑡𝑖+𝑇ℎ

= 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 

𝑥𝑡𝑖
= 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝑓𝑜𝑟 𝑡 = 𝑡𝑖 …𝑇ℎ 
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Meadows et al. [30] reported increased overshoot and faster response with longer 

time horizons. Moreover, longer prediction horizons are more susceptible and 

sensitive to disturbances. 

 

Bryson et al. [32] suggest that weight values should be inversely proportional to the 

maximum limit. On a contrasting note, Meadows et al. [30] found this to be too 

penalizing and instead suggest to apply a penalty to constraint deviations. This would 

be in accordance with general optimization theory, where instead of fixing equality 

constraints and introducing more variables, a slack variable is added instead [33]. 

 

Where 𝑆 is the penalty given if the control action approaches 𝑢𝑙𝑖𝑚𝑖𝑡𝑠. For the 

optimizer to find a meaningful solution, the control problem must be both observable 

and controllable [34]. Figure 6 illustrates the MPC workings, showing the forecasted 

state as part of the solution. It is interesting to note that MPC has been used in the 

design of thrust-vectored flight [35] and also guidance and control [36]. The former 

achieved better results than the static gain LQR, and similar performance to gain-

scheduled LQR, where many different LQR solutions are applied depending on the 

state in which the plant is in.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  ෍ (𝑥𝑡
𝑇

𝑡𝑖+𝑇ℎ

𝑡=𝑡𝑖

𝑄𝑥𝑡 + ∆𝑢𝑡
𝑇𝑅∆𝑢𝑡 + 𝜔𝑇𝑆𝜔) 

𝑢𝑡 − 𝑢𝑙𝑖𝑚𝑖𝑡𝑠 ≤ 𝜔, 𝑥𝑡 ∈ X 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 
𝑥𝑡𝑖+𝑇ℎ

= 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 

𝑥𝑡𝑖
= 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝑓𝑜𝑟 𝑡 = 𝑡𝑖 …𝑇ℎ 

Figure 6 MPC takes the current state and input and finds a solution for the optimal input based on the 

required constraints and prediction horizon [55]. 
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2.5 Reinforcement Learning 
 

As opposed to explicitly defining a model, RL applies the theory of dynamic 

programming to define a framework that adapts itself through episodic interaction 

with an environment. The environment is typically defined as a Markov Decision 

Process [37], where a set of actions are available to choose from at any state. A 

general RL problem would involve a policy that takes actions, states that represent 

where the agent is, and rewards that enforce good actions when in a state. The goal 

is to learn the policy, the method of choosing actions, that maximizes rewards. Figure 

7 illustrates this system. 

 

 

The value function, 𝑉(𝑠), represents the expected cumulative reward that a policy 

would get if it followed that policy from there onwards. Formally, let: 

 

𝑅𝑡 = ෍ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

 

𝑃𝑠𝑠′
𝑎 = Pr{𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} 

𝑅𝑠𝑠′
𝑎 = 𝐸{𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′} 

 

In linguistic terms, given action 𝑎 and state 𝑠, 𝑃𝑠𝑠′
𝑎  defines the transition probabilities 

of going from one state to each possible next state whilst 𝑅𝑠𝑠′
𝑎  defines the expected 

value of the next reward [38]. 𝑅𝑡 represents the discounted future rewards, where 

0 ≤ 𝛾 ≤ 1. Note that like MPC, the aim in RL is to maximize the reward and reach 

an optimal solution by breaking down a multiperiod problem into smaller pieces. 

𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕 

𝑨𝒈𝒆𝒏𝒕 having a 

policy 𝜋(𝑠, 𝑎) that 

maps states to 

actions. 

𝑎𝑐𝑡𝑖𝑜𝑛, 𝑎 
𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑠′ 

𝑟𝑒𝑤𝑎𝑟𝑑, 𝑟 

𝑉∗(𝑠) =  max
𝑎 ∈𝐴(𝑠)

෍𝑃𝑠𝑠′
𝑎

ቂ𝑅𝑠𝑠′
𝑎 + 𝛾𝑉∗

ቀ𝑠′ቁቃ

𝑠′

 

𝐴𝑐𝑡𝑖𝑜𝑛, 𝑎, 
chosen greedily 

(maximum 

value), 

randomly with 

probability ε 

sampled from 

𝑈[0,1], or 

otherwise. 

𝑠′ can be represented by a 

vector, for example, 𝒙 in the 

rocket landing problem. 

 

The reward serves as 

feedback which is used to 

update the policy. 

Figure 7 RL problem defined by a value function, which is used to determine how good it is for an 

agent to be in that state. An action is then taken and the environment reciprocates with a reward 

which is then used to update the policy. 



15 

 

This notion is known as Dynamic Programming and it’s central to Bellman’s 

equation [39]: 

 

𝑉(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} 

= 𝐸𝜋{𝑟𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑟𝑡+𝑘+2
∞
𝑘=0 |𝑠𝑡 = 𝑠} 

= ෍𝜋(𝑠, 𝑎)෍𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉(𝑠′)]

𝑠′𝑎

 

 

Where 𝜋(𝑠, 𝑎) is the probability of choosing action 𝑎 when in state 𝑠. Although 

theoretically sound, for an update of the value function to take place, all states must 

be visited. Instead, an iterative version known as Temporal Differencing (TD) [40] 

makes an online update of the form: 

 

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑉(𝑠𝑡)] 

← 𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] 
 

This equation provides an updated estimate of 𝑉(𝑠) as soon as the state is visited. It 

only has one hyper parameter, α (learning rate), and can also be expanded to include 

additional terms that reinforce not just the current state, but previous states that led 

to a reward. This is known as TD(λ) [40]. 

 

2.5.1 Discrete State-Action Q-Learning 
 

Bellman’s equation above makes use of transition probabilities. However, what if 

these were unknown? Transition probabilities imply knowledge of a model, and the 

aim is to obtain a model-free framework that can learn iteratively. 𝑉(𝑠) is a notation 

for a value of a state of the optimal policy that maximizes the expected reward. On 

the other hand, 𝑄(𝑠, 𝑎) represents the value of a state if action 𝑎 is chosen, and then 

continue with that policy from that state onwards. This means that it eliminates the 

need to know and execute the optimal policy, 𝜋∗(𝑠, 𝑎), and instead, execute any 

action available according to the policy at that time step. Formally, this can be written 

as: 

 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾𝐸𝑠𝑡+1
[𝑉(𝑠𝑡+1)] 

 

This form eliminates the need for a model and can be adapted to many problems.  

 

Sutton et al. [41] give an example with a cliff walking grid world having discrete 

actions 𝑢 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}. The environment awards a reward of -1 for all 

transitions except for the cliff region, in which a reward of -100 is given as shown in 

Figure 8. They compare off-policy with on-policy Q-Learning, where the latter is 

known as State Action Reward State Action (SARSA). The only difference between 

these two algorithms is in the degree of greediness, as illustrated overleaf. 
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Sutton et al. reported that SARSA achieves higher rewards than Q-Learning. After a 

few episodes, Q-Learning learns the optimal policy, that which walks along the edge 

of the cliff. Due to the ε-greedy action selection, sometimes this can result in falling 

off the cliff. Interestingly, in SARSA, the policy chooses to take the longer but safer 

path. The authors go on to suggest that ε be annealed for the two algorithms to 

converge. 

 

Notice that this example represents discrete states with discrete actions. The state is 

left to the designer’s choice. Although not specified, in the Cliff Walk example this 

can be represented by the grid in which the agent is currently in, for instance 

representing each square with a binary number. This leads to the tabular 

representation shown in Figure 9. 

The problem with such a formulation is known as the curse of dimensionality [42], 

where the number of states or actions make the problem infeasible. Such is the case 

in this project, where the actions 𝑢 ∈ {𝐹𝐸 , 𝐹𝑆, 𝜑} are all continuous. One limiting 

solution is to discretize both states and actions, however, this is not scalable. To this 

Figure 8 Cliff walk example [41], where the aim is to arrive to point G without falling off the cliff. A 

reward of -1 is given for each transition, whereas -100 is given for walking on the cliff. 

On-Policy Q-Learning (SARSA): 

 
Off-Policy Q-Learning: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

Figure 9 Tabular (2D array) representation of the state-action function, Q(s,a) with optimistic 

initialisation of the action Right. This initialization will lead to action Right being picked more 

frequently initially, contributing to faster learning. 

1 2 3 n-1 n

Left 0 0 0

Right 0.1 0.1 … … … 0.1

Up 0 0 Q(s, a=up) 0

Down 0 0 Q(s, a=down) 0

States accesed using binary representation

States

A
ct

io
n

s

…
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end, Lillicrap et al. [43] formulated a continuous framework based on deep learning 

which was implemented in this project. 

2.6 Conclusion 
 

In this section, theory and examples related to the methods implemented in this 

project were introduced. The VTOL problem relies on controllers, and each 

introduced algorithm solves a shortfall presented in the preceding ones. 

 

PID, LQR, MPC, and RL were the four control methods that were discussed. The 

PID is the simplest and most intuitive method, using the proportional, integral and 

derivative of the error with respect to a reference in order to drive the process. 

However, the PID is suitable for SISO systems. Therefore, where multivariable, 

coupled and non-linear systems are presented, the PID can only be implemented to 

a limited extent on the linearized and decoupled plant. This leads to inaccuracies and 

sub-optimal control. PIDs are tackled as a baseline in Section 4.2. 

 

Unlike PID controllers, LQRs use the state space to find the optimal feedback matrix 

−𝐾. Moreover, whereas the PID acts on the error, the LQR acts on the state. This 

state is still evaluated with respect to an equilibrium point since any non-linearities 

need to be linearized for an LQR to be designed. The general form of LQR does not 

include constraints and the designed LQR will only be optimal at the linearized state. 

 

The shortfall of LQR in dealing with constraints as well as different conditions led 

to MPC, where the problem is formed as an objective function with constraints. MPC 

finds the correct input to take by minimizing a cost function with respect to the states 

and actions. Like LQR, the cost function is quadratic, but it is not solved analytically. 

Instead, an optimizer is used to find a solution to the objective function. This is also 

done whilst respecting constraints and following a trajectory. This means that 

whereas PIDs and LQRs only consider the current state, MPC can incorporate the 

model in the constraints and simulate future states; enabling it to pick the best actions 

that maximize not just the current reward, but also future rewards. The derivation of 

LQR that led to the implementation of MPC is detailed in Section 4.3. 

 

Recall that the general form of the MPC still needs a well-defined model where the 

state is found analytically or is estimated. The notion of rewards is further extended 

to RL, where the MPC framework is reformulated in an iterative and model-free 

framework that interacts with the environment. Feedback is given as a reward value 

as opposed to an error. Like MPC, it is derived from Bellman’s equations and seeks 

to find the best policy that maximises future rewards. RL can take on many forms, 

but discrete state-actions prove to be limiting in control applications. To this end, a 

state-action approximator as well as a continuous-domain and relatively new method 

is applied to the VTOL problem and are discussed in Sections 4.4 and 4.5.
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3 Simulation Environment 
 

The environment is built in Python 3.5 and depends on the use of Box2D [7], [44]. 

Box2D is a physics engine that supports rigid body simulations. It was originally 

intended for games, however, it can also be used for light simulations not requiring 

state of the art accuracy used in critical applications. 

 

Bodies in the environment are built using basic shapes and objects such as polygons, 

rigid bodies (defined as being as hard as diamond), fixtures (having attributes such 

as density, friction), physical constraints, joints, joint motors (specifying torque), and 

finally the world which contains all the defined objects. 

 

Box2D is tuned for meters, kilograms, seconds and radians. Since the rocket is 

modeled after Falcon 9 [4] and the dimensions are quite large, all units are divided 

by a scaling factor (1:30) as suggested by the author of Box2D. The physics engine 

is meant to take care of collisions and physics related calculations with a user-defined 

frequency. In this case, each time-step was set to be 1/60 s, or updating with a 

frequency of 60Hz. Upon passing an action to the simulation as a 1×3 array 

[𝐹𝐸 , 𝐹𝑆, 𝜑], corresponding forces are applied to the respective body. As an example, 

a force equivalent to 𝐹𝐸 = 1 would result in a force 𝐹 =

𝐹𝐸 .𝑀𝐴𝐼𝑁_𝐸𝑁𝐺𝐼𝑁𝐸_𝑃𝑂𝑊𝐸𝑅 applied to the bottom of the nozzle. 𝐹𝐸 and 𝐹𝑆 values 

are normalized, whereas the angle 𝜑 is not. 

 

Two types of bodies are defined in Box2D; static and dynamic. The former is meant 

to be indestructible, defined as having zero mass. On the other hand, dynamic bodies 

are meant for collisions, forces and general dynamics. All rocket parts are defined to 

be dynamic bodies, whereas the barge and sea are static. The nozzle is fixed with the 

lower part of the main rocket body by a revolute joint. The revolute joint is given a 

motor with a specified torque, having a certain delay. In this case, the torque was 

defined large enough such that the angle is driven in real-time with little to no delay. 

 

The legs are also defined as dynamic bodies and are connected via a revolute joint 

with the rocket. Angle constraints of ±5𝑜 and a torque were given to the joints to 

simulate a spring once in contact with the ground. Forces are applied at 90𝑜 with 

respect to the defined body at the relative coordinates. Since visuals need to represent 

the physics simulation and body coordinates, all simulation dynamics are updated on 

the actual defined objects in the physics engine. As an example, the (𝑥, 𝑦) position 

of the rocket can be accessed with: 𝑙𝑎𝑛𝑑𝑒𝑟. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 and this is then used to render 

the rocket. Particles are used to represent forces. This is done for visual aid and is 

very useful for verifying controls visually. However, rendering is not required for 

the physics simulation to take place. Finally, the environment is meant to reset to the 

defined initial conditions if the rocket tilts by more than ±35𝑜 with respect to the 𝑧 

axis or touches the outside boundary. All the above is summarized in Figure 10 and 

Figure 11. 
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Figure 10 Actual simulation executing a control algorithm. Visuals are needed to correctly verify that 

the simulation is being executed as intended. 

Figure 11 Rocket defined from multiple dynamic bodies. Particles are used as visual aid to represent 

forces being applied. 
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4 Methodology 
 

This section includes the implemented algorithms with detailed derivations and 

methods. Reference is frequently made to theory outlined in the Background section. 

A brief but necessary mathematical derivation is first presented. The baseline PID 

controller design is then explained, followed by LQR theory which leads to MPC. 

Model free RL is then introduced, starting with discrete action function 

approximation Q-Learning, followed by the final model using DDPG, which tackles 

the vertical rocket landing problem in a continuous manner. 

4.1 Mathematical Derivation 
 

The problem and nomenclature were introduced under Problem Definition in Section 

1.2, specifically Figure 2. Support legs were omitted from the diagram for 

clarification purposes.  

 

The Nitrogen gas thrusters allow for more complex but stable control. However, their 

force can be fixed to 0 if required, simplifying the model. On the same line, the angle 

and position of the barge were fixed in this project, but are included as variables in 

the environment to reflect the possible changes that might arise. 

 

By using Newton’s 3rd law of motion, the free-body diagram shown in Figure 12 can 

be deduced: 

 

𝑙𝑛 

ϕ 
θ 

𝑚𝑔 

θ 

𝑙2 

𝑙1 

𝐹𝐸  

𝐹𝑅  

𝐹𝐿  

𝐹𝐸 . sin(𝜑 + 𝜃) 

𝐹𝐸 . cos(𝜑 + 𝜃) 

𝐹𝑅 . cos(𝜃) 

𝐹𝐿 . cos(𝜃) 

𝐹𝐿 . sin(𝜃) 

𝐹𝑅 . sin(𝜃) 

𝑙𝑠 

Figure 12 Free body diagram showing all forces considered. 
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Solving for translational forces in 𝑥, 𝑧 directions as well as rotational torque with 

respect to the rocket’s COG leads to: 

 

 

In the last step, small angles were assumed for simplification. Thus, cos(𝜑) =

cos(𝜃) ≈  1 and sin(𝜑) ≈ 𝜑, sin(𝜃) ≈ 𝜃. 

 

 

Torque: 

 

𝑙𝑛 cos(𝜑) represents the fact that the thrust is applied to the base of the nozzle.  

 

𝑚̇ = −𝛼(𝛽𝐹𝐸 − 𝐹𝑠) (4) 

𝐽𝑇𝜑̈ = 𝜏 (5) 

 

Equation 4 specifies that the fuel burn is directly proportional to thrust. The control 

problem is a multiple input, multiple output (MIMO) system where 𝐹𝐸 , 𝐹𝑠 𝑎𝑛𝑑 𝜑 

represent the variable inputs that must be adjusted for the rocket to land safely at a 

reference position. The independent forces applied by the cold gas thrusters at the 

upper half of the rocket can be implied from 𝐹𝑠. 

 

𝜃, 𝑥 𝑎𝑛𝑑 𝑧 represent the output of the system. A suitable representation for writing a 

MIMO problem is state space form: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

 

 

𝑚𝑥̈ =  𝐹𝐸 sin(𝜃 + 𝜑) + 𝐹𝑠 cos(𝜃) 

𝑥̈ =
𝐹𝐸 cos(φ) sin(𝜃) + 𝐹𝐸 cos(𝜃) sin(𝜑) + 𝐹𝑠 cos(𝜃)

𝑚
 

𝑥̈ =
𝐹𝐸𝜃 + 𝐹𝐸𝜑 + 𝐹𝑠

𝑚
 (1) 

𝑚𝑧̈ =  𝐹𝐸 cos(𝜃 + 𝜑) − 𝐹𝑠 sin(𝜃) − 𝑚𝑔 

𝑧̈ =
𝐹𝐸 cos(φ) cos(𝜃) − 𝐹𝐸 sin(φ) sin(𝜃) − 𝐹𝑠 sin(𝜃) − 𝑚𝑔

𝑚
 

𝑧̈ =
𝐹𝐸 − 𝐹𝐸𝜑𝜃 − 𝐹𝑆𝜃 − 𝑚𝑔

𝑚
  

 

(2) 

𝐽𝜃̈ =  −𝐹𝐸 sin(𝜑) (𝑙1 + 𝑙𝑛 cos(𝜑)) + 𝑙2𝐹𝑆 

𝜃̈ =
−𝐹𝐸𝜑(𝑙1 + 𝑙𝑛) + 𝑙2𝐹𝑆

𝐽
 (3) 
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Where 

𝑥 = 𝑛 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑦 = 𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑢 = 𝑟 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐴, 𝐵, 𝐶, 𝐷 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 

 

This formulation requires that the problem be linear time-invariant, which also 

implies that sin(𝜃) ≅  𝜃, cos (𝜃) ≅ 1 for small angles of 𝜃. Even if this assumption 

is carried on, Equations 1-3 suggest that the inputs and states are coupled and not 

independent. For instance, varying 𝐹𝐸 leads to changes in all states. This coupling is 

not trivial and presents a difficult problem in control as the system needs to be linear 

for it to be represented in state space form. 

 

To this end, the problem can be linearized about equilibrium points if the system 

operates around those points. A point is called an equilibrium point if there exists a 

specific input that renders all changing states to 0 [45]. Formally, for a non-linear 

differential equation given by: 

 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

 

An equilibrium point is defined as: 

𝑓(𝑥̅, 𝑢̅) = 0 

 

Setting 𝑥,̈ 𝑧̈ and 𝜃̈ to 0 in Equations 1-3 and solving the simultaneous equations leads 

to the equilibrium input 𝑢̅ = [𝑚𝑔, 0, 0]. This means that if we start the simulation at 

the equilibrium point and apply 𝑢̅, the system will remain at that point assuming no 

external disturbances or randomness. However, starting away from 𝑥̅ and applying a 

different 𝑢̅ leads to a deviation: 

𝛿𝑥(𝑡) = 𝑥(𝑡) − 𝑥̅ 

𝛿𝑢(𝑡) = 𝑢(𝑡) − 𝑢̅ 

Then it follows that: 

𝛿̇𝑥(𝑡) = 𝑓(𝑥̅ + 𝛿𝑥(𝑡), 𝑢̅ + 𝛿𝑢(𝑡)) 

Expanding by Taylor’s theorem and ignoring high order terms leads to: 

𝛿̇𝑥(𝑡) ≈
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥̅,𝑢=𝑢̅

𝛿𝑥(𝑡) + 
𝜕𝑓

𝜕𝑢
|
𝑥=𝑥̅,𝑢=𝑢̅

𝛿𝑢(𝑡) 

≈ 𝐴𝛿𝑥(𝑡) +  𝐵𝛿𝑢(𝑡) 

This is called Jacobian Linearization about the equilibrium point. A controller should 

work well if it is designed at this point, as long as the system operates near that point. 

Both LQR and MPC make use of the linearized state space, and which is discussed 

further in Section 4.3.1. 
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4.2 PID Controller Design 
 

Recall that the PID is used for a SISO system. Therefore, we wish to transform a 

SISO in the general transfer function form: 

 

𝐺(𝑠) =
𝑌𝑜𝑢𝑡𝑝𝑢𝑡(𝑠)

𝑋𝑖𝑛𝑝𝑢𝑡(𝑠)
 

 

Consider taking the Laplace transform of Equation 1: 

 

𝑠2𝑋(𝑠) =
𝐹𝐸(𝑠)𝜃(𝑠) + 𝐹𝐸(𝑠)𝜑(𝑠) + 𝐹𝑠(𝑠)

𝑚
 

 

𝑋(𝑠) in this equation represents the position in Laplace domain, which would 

represent 𝑌𝑜𝑢𝑡𝑝𝑢𝑡(𝑠) in the transfer function. The inputs are [𝐹𝐸(𝑠), 𝐹𝑆(𝑠), 𝜑(𝑠)], 

however, 𝑋𝑖𝑛𝑝𝑢𝑡(𝑠) can only represent one input at a time, hence the multi-

variability and coupling. 

 

Methods for decoupling, such as the Relative Gain Array [46] allow a system to be 

decoupled and treated as a SISO. However, since the PID is only used as a 

benchmark, 3 separate PIDs were designed by taking the following assumptions for 

Equations 1-3. 

Equation 1 

𝑚𝑥̈ =  𝐹𝐸 sin(𝜃 + 𝜑) + 𝐹𝑠 cos(𝜃) 

Assume that 𝐹𝐸 = 0 and small angles apply. This leads to the following 

simplification: 

𝑋

𝐹𝑆
=

1

𝑚𝑠2
 

However, note that 𝐹𝑆 affects 𝜃 significantly, as is evident from Equation 3. This 

coupling becomes complicated since 𝑥 and 𝜃 may require different conflicting 

controls from 𝐹𝐸 and 𝐹𝑆. This leads to the presumption that 𝐹𝑆 should output a control 

based on the PID error of both 𝑘1𝜃 and 𝑘2𝑥, where 𝑘1 and 𝑘2 are constants. 

Moreover, both 𝐹𝐸 and 𝐹𝑆 should control the position 𝑥. 

To simplify the problem, the design of the PID took place using just one input, with 

the other set to 0. 𝑘2 was then obtained empirically, leaving the same PID constants 

that were designed. This method was also used to derive the control for 𝐹𝐸 and 𝜑 

and proved to work effectively.
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Equation 2 

𝑚𝑧̈ =  𝐹𝐸 cos(𝜃 + 𝜑) − 𝐹𝑠 sin(𝜃) − 𝑚𝑔 

Using the same assumption as Equation 1, setting 𝐹𝑆 = 0 and taking the Laplace 

transform: 

𝑍

𝐹𝐸 ′
=

1

𝑚𝑠2
 

Where 𝐹𝐸
′ = 𝐹𝐸 − 𝑚𝑔, i.e. an offset for 𝑚𝑔 is applied in practice after the PID is 

designed. Since 𝐹𝐸 also affects the states associated with 𝑥 (but to a lesser extent), 

the same empirical method proposed in Equation 1 above is used to design this PID.  

Equation 3 

𝐽𝜃̈ =  −𝐹𝐸 sin(𝜑) (𝑙1 + 𝑙𝑛 cos(𝜑)) + 𝑙2𝐹𝑆 

The final input that needs to be controlled is 𝜑. Note that −𝐹𝐸 sin(𝜑) (𝑙1 +

𝑙𝑛 cos(𝜑)) is the small contribution of 𝐹𝐸 to the rotational moment. Also, notice the 

opposing forces given by 𝐹𝐸 and 𝐹𝑆 as explained in Equation 1. Since 𝜑 is being 

controlled, all other inputs can be treated as constants, even though they are 

variables. This independence assumption simplifies the problem and allows the PIDs 

to be designed in a straightforward manner. 

𝜃

𝜑
= −

𝑐

𝐽𝑠2
 

4.2.1 Design by Root Locus 
 

Although an integral term brings the steady state error down to 0, it may lead to 

instability due to the introduction of an additional zero. For this reason, the design 

process took place on a Proportional Derivative controller which is given by: 

 

𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠)

𝐸𝑒𝑟𝑟𝑜𝑟(𝑠)
= 𝐾𝑑 (𝑠 +

𝐾𝑝

𝐾𝑑
) 

 

Consider the design on Equation 2 where the goal is to track a reference altitude 

𝑍(𝑠)𝑟𝑒𝑓. The closed loop system can be represented as shown in Figure 13. 

 

 

 

 

 

1

𝑚𝑠2 𝐾𝑑 (𝑠 +
𝐾𝑝

𝐾𝑑
) 

 

+ 
_ 

𝑘1 

𝑍(𝑠) 𝑍(𝑠)𝑟𝑒𝑓 

Figure 13 Closed loop system diagram. 

𝐹𝐸 𝐸(𝑠) 
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The open loop poles of the uncompensated system 
1

𝑚𝑠2 leads to double poles at 𝑠 =

0, implying the system is constantly oscillating with no change in magnitude. We 

would like to design a controller that tracks a reference input with a certain transient 

behaviour and steady state error. 

Let the response time be 2 seconds, implying 90% of the final steady state value 

should be obtained no later than 2 seconds. Also, let the damping factor, ζ, be 0.7, 

implying a peak overshoot of 4.5% according to the equation: 

𝑃𝑒𝑎𝑘 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 100. 𝑒
−

𝜁𝜋

√1−𝜁2
 

Using the angle and magnitude criteria and root locus [47], the following PD 

controller can be computed analytically: 

9.9811(1 + 2.7𝑠) 

Together with the original transfer function, the compensated system traverses the 

locus shown in Figure 14 once a PD controller is added to the system. Notice the 

double pole marked in ‘x’ at 𝑠 = 0. The closed loop poles occur at −0.534 ± 0.332𝑗 
in accordance with the design as shown in Figure 15. In the actual algorithm, the 

derivative term was re-calibrated as part of the empirical tuning. 

The step response for 𝑍 is illustrated in Figure 16 overleaf. Note that this controller 

was designed in the time domain. To translate it into the digital domain, the 

derivative term needs to be scaled by 
1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑇𝑖𝑚𝑒
, which is 

1

60
 in this case. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Compensated system – open loop root locus. 
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Figure 15 Closed loop root locus showing closed loop poles and zeros. 

Figure 16 Step response of the closed loop system with the PID designed to track 𝑧. 



 

27 

 

Having designed the z-PID controller having output 𝐹𝐸, 𝑘1 was set to 1, whereas 𝑘2, 

the term used to represent 𝑥 in the error function, was found empirically during the 

simulation. As with any hyper parameter tuning, all other parameters of the 

simulation were held constant whilst finding 𝑘2. This means that 𝜑 and 𝐹𝑆 were held 

to 0, with no initial acceleration in the 𝑥 direction. This enabled the rocket to descend 

in a controlled manner, adjusting 𝑘2 until the descent was satisfactory with respect 

to different 𝑥 initializations. 

The same procedure was repeated with the other two controllers, leading to the 

following algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Algorithm 1 PID Control 

 

Initialize PIDs as: 

 𝐹𝐸𝑃𝐼𝐷
= 𝑃𝐼𝐷(𝐾𝑝 = 10, 𝐾𝑖 = 0,𝐾𝑑 = 10) 

 𝐹𝑆𝑃𝐼𝐷
= 𝑃𝐼𝐷(𝐾𝑝 = 5,𝐾𝑖 = 0.01, 𝐾𝑑 = 6) 

 𝜑𝑃𝐼𝐷 = 𝑃𝐼𝐷(𝐾𝑝 = 0.085, 𝐾𝑖 = 0.001, 𝐾𝑑 = 10.55) 

 

When called to perform control every 
1

𝑇𝑠
 seconds (default: 60Hz): 

 𝑥, 𝑧, 𝑥̇, 𝑧̇, 𝜃, 𝜃̇, 𝑙𝑒𝑓𝑡 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝒔𝒕𝒂𝒕𝒆 

 --------------------------------------------------------------------------------------  

 𝑧𝑒𝑟𝑟𝑜𝑟 = 𝑧𝑟𝑒𝑓 − 𝑧 + 0.1𝑥 

 𝑧̇𝑒𝑟𝑟𝑜𝑟 = −𝑧̇ + 0.1𝑥̇ 

 𝑭𝑬 = 𝐹𝐸𝑃𝐼𝐷
. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑝𝑢𝑡(𝑧𝑒𝑟𝑟𝑜𝑟 , 𝑧̇𝑒𝑟𝑟𝑜𝑟) ∗ 𝐾𝐹𝐸𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

 

 -------------------------------------------------------------------------------------- 

 𝜃𝑒𝑟𝑟𝑜𝑟 = −𝜃𝑟𝑒𝑓 + 𝜃 + 0.2𝑥 

 𝜃̇𝑒𝑟𝑟𝑜𝑟 = 𝜔 + 0.2𝑥̇ 

 𝑭𝑺 = 𝐹𝑆𝑃𝐼𝐷
. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑝𝑢𝑡(𝜃𝑒𝑟𝑟𝑜𝑟 , 𝜃̇𝑒𝑟𝑟𝑜𝑟) 

 --------------------------------------------------------------------------------------  

 𝜃𝑒𝑟𝑟𝑜𝑟 = −𝜃𝑟𝑒𝑓 + 𝜃 

 𝜃̇𝑒𝑟𝑟𝑜𝑟 = 𝜔 

 𝑖𝑓 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒(𝑥) > 0.01 𝑎𝑛𝑑 𝑑𝑦 < 0.5) 

  𝜃𝑒𝑟𝑟𝑜𝑟 = 𝜃𝑒𝑟𝑟𝑜𝑟 − 0.06𝑥 

  𝜃̇𝑒𝑟𝑟𝑜𝑟 = 𝜃̇𝑒𝑟𝑟𝑜𝑟 − 0.06𝑥̇ 

 𝝋 = 𝜑𝑃𝐼𝐷. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑝𝑢𝑡(𝜃𝑒𝑟𝑟𝑜𝑟 , 𝜃̇𝑒𝑟𝑟𝑜𝑟) ∗ 𝐾𝜑𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
 

 --------------------------------------------------------------------------------------  

 𝑖𝑓 (𝑙𝑒𝑓𝑡 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) 

  𝐹𝐸 = 0 
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4.3 MPC Controller Design 
 

The failure of LQR to include constraints in the general case led to inputs 

experiencing values outside their intended limit. This was commented on in Section 

2.4.4. To this end, MPC was proposed as a more sophisticated and robust numerical 

method to solve an objective function at every step as opposed to designing a 

controller at an equilibrium point. The design process is discussed in this section. 

4.3.1 Linearization 
 

Jacobian linearization was proposed as a viable numerical solution to approximate 

non-linear functions using Taylor’s series expansion. Formally; 

𝛿̇𝑥(𝑡) ≈
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥̅,𝑢=𝑢̅

𝛿𝑥(𝑡) + 
𝜕𝑓

𝜕𝑢
|
𝑥=𝑥̅,𝑢=𝑢̅

𝛿𝑢(𝑡) 

≈ 𝐴𝛿𝑥(𝑡) +  𝐵𝛿𝑢(𝑡) 

Where: 

𝐴 = ∇𝑥𝑓 =  

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

, 𝐵 = ∇𝑢𝑓 =  

[
 
 
 
𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
⋯

𝜕𝑓𝑛

𝜕𝑢𝑛]
 
 
 

 

This problem can be solved in two ways; analytically or by direct computation in the 

simulation. Analytically, this would be equivalent to simply performing partial 

differentiation on the state equations 𝑥 = [𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇] and 𝑢 = [𝐹𝐸 , 𝐹𝑆 , 𝜑] leading 

to the following representations: 

𝐴 =

[
 
 
 
 
 
 
0 1 0 0 0 0

0 0 0 0
𝐹𝐸

𝑚
0

0 0 0 1 0 0

0 0 0 0
−𝐹𝐸𝜑−𝐹𝑆

𝑚
0

0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 
 
 

, B=

[
 
 
 
 
 
 
 

0 0 0
𝜃+𝜑

𝑚

1

𝑚

𝐹𝐸

𝑚

0 0 0
1−𝜑𝜃

𝑚
−

𝜃

𝑚
−

𝐹𝐸𝜃

𝑚

0 0 0

−
𝜑(𝑙1+𝑙𝑛)

𝐽

𝑙2

𝐽
−

𝐹𝐸(𝑙1+𝑙𝑛)

𝐽 ]
 
 
 
 
 
 
 

 

Although analytically inexpensive, this method proved to be less effective than 

computing the Jacobians using numerical values from the simulation itself. 

Therefore, multi-threading was used to create (6 + 6) new simulations initialized 

with the exact dynamics and coordinates as the current time step. A matrix 𝜀𝐼, was 

used to change each successive state or input by a small amount, 𝜀, in either direction. 

Each simulation was then run through one time step and the state was returned. Finite 

differences were then used to create the entire Jacobian based on the actual resulting 

values. This had the advantage of capturing unconsidered dynamics, such as the 

effect of 𝑚̇, and resulted in better performance than the analytical solution. The 

procedure is documented in Background Algorithm 1 below. 
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In finite differences, the smaller the value of 𝜀, the more local and accurate the 

differentiation. A somewhat conflicting result was obtained in this case. Setting ε 

such that the action under test become saturated led to better results than simply 

incrementing by a small step change, such as 𝜀 = 0.001. This result can be explained 

by the fact that a small step change leads to a negligible change in state, resulting in 

𝐴 and 𝐵 becoming almost equal to 𝟎. This effectively leads to the optimizer not 

finding a solution or outputting a skewed trajectory. Testing ε with values equivalent 

[0.01, 0.1, 10, 50, 100] suggested that there is a range, which depends on the scale 

(1:30) of the simulation, in which proper trajectory planning takes place. This range 

was found to be between 10-100, with a value of 50 used in the simulation. This 

effectively saturates actions in the case of matrix 𝐵. 

 

 

Background Algorithm 1 Partial Differentiation with Finite Differences 

 

Partial Differentiation function called, passing any simulation settings: 

 𝜀 = 𝑠𝑡𝑒𝑝 𝑐ℎ𝑎𝑛𝑔𝑒 

 ∆+𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒 + 𝜀𝐼 # This results in a 6×6 matrix 

                ∆−𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒 − 𝜀𝐼  

 

 𝑆+ = 𝑟𝑢𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(∆+𝑠𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑝𝑢𝑡)  

 𝑆− = 𝑟𝑢𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(∆−𝑠𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑝𝑢𝑡) 

 

 𝐴 =
𝜕𝑓
𝜕𝑥

= 𝑆+−𝑆−
2𝜀

  
 ----------------------------------------------------------------------------------------------  

 ∆+𝑖𝑛𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 + 𝜀𝐼 

                ∆−𝑖𝑛𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 − 𝜀𝐼  

 

 𝑈+ = 𝑟𝑢𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(∆+𝑖𝑛𝑝𝑢𝑡, 𝑠𝑡𝑎𝑡𝑒) # This results in a 6×3 matrix 

 𝑈− = 𝑟𝑢𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(∆−𝑖𝑛𝑝𝑢𝑡, 𝑠𝑡𝑎𝑡𝑒) 

 

 𝐵 =
𝜕𝑓
𝜕𝑢

= 𝑈+−𝑈−
2𝜀

  
 

𝑟𝑢𝑛𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 loops through the state and input matrices and executes a simulation 

using values from each row. This results in a total of 2𝑁 (𝑁 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑒𝑠) independent simulations for a total of 12, each simulating just 1 

step and appending the results to matrices 𝐴 and 𝐵. 
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4.3.2 Design 
 

Recall that a general MPC controller is given by: 

The above problem presents the following challenges and design decisions: 

• Whether to penalize the change in actions as opposed to penalizing the 

actual action values. 

• Whether to use slack variables to penalize the optimizer for choosing values 

of actions or states above the constraints, or simply leave hard constraints. 

• What value to use for the maximum error between the ideal states and the 

actual states. 

• What values to use in matrices 𝑄 and 𝑅; 

• What time horizon, 𝑇ℎ, to use; 

• What control horizon, 𝑇𝑐, to use. 

A number of experiments were conducted for the first two options to find the best 

solution for fixed values of 𝑇ℎ, 𝑇𝑐 , 𝑄 and 𝑅. Once that result was established, 𝑄, 𝑅, 𝑇𝑐 

and 𝑇ℎ were treated as hyper parameters and are discussed in Section 5.5.  The 

general problem was restructured as shown below. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  ෍ (𝑥𝑡
𝑇

𝑡𝑖+𝑇ℎ

𝑡=𝑡𝑖

𝑄𝑥𝑡 + 𝑢𝑡
𝑇𝑅𝑢𝑡) 

𝑢𝑡 ∈ U, 𝑥𝑡 ∈ X 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

|𝑥𝑡 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡𝑡
| ≤ error 

𝑥𝑡𝑖
= 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝑓𝑜𝑟 𝑡 = 𝑡𝑖 …𝑇ℎ 

 

Main Algorithm 2 MPC 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  ෍ (∆𝑥𝑡
𝑇

𝑡𝑖+𝑇ℎ

𝑡=𝑡𝑖

𝑄∆𝑥𝑡 + 𝑢𝑡
𝑇𝑅𝑢𝑡 + ∆𝑢𝑡

𝑇(0.1𝑅)∆𝑢𝑡 ) 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 
𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟𝑀𝑎𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒

6
≤ 𝑢𝑡[FE] ≤ 𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟𝑀𝑎𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 

−𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑑𝑒 𝐸𝑛𝑔𝑖𝑛𝑒 ≤ 𝑢𝑡[FS] ≤ 𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑑𝑒 𝐸𝑛𝑔𝑖𝑛𝑒 

−𝜑𝑀𝑎𝑥 ≤ 𝑢𝑡[φ] ≤ 𝜑𝑀𝑎𝑥 

|𝑥𝑡𝑎𝑟𝑔𝑒𝑡[𝑇ℎ] − 𝑥𝑡[𝑇ℎ]| ≤ 0.01 

𝑥0 = 𝑥𝑡𝑖
  

 𝑤ℎ𝑒𝑟𝑒 ∆𝑥𝑡 = 𝑥𝑇𝑎𝑟𝑔𝑒𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 − 𝑥𝑡 

∆𝑢𝑡 = 𝑢𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑢𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
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Note that a problem can be tested for convexity by computing the Hessian matrix 

and checking if it is positive semi-definite, that is if it’s Eigen values are greater or 

equal to 0. When considering the constraints mixed with the cost function, this test 

becomes non-trivial. For this reason, the constraints were left to be as linear as 

possible since a convex framework, 𝑐𝑣𝑥, was used to solve the problem. The 

Splitting Conic Solver was used for the optimization problem since it can solve 

convex second-order cone programs of the type: 

Experiments were conducted to find the optimal values for the hyper parameters 

discussed earlier and results are discussed in Section 5.5. 

4.3.3 Trajectory Generation 
 

An 𝑥𝑇𝑎𝑟𝑔𝑒𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 was passed to the optimizer to track an ideal trajectory at every 

𝑥𝑡 iteration. This trajectory was computed empirically by first defining an ideal z-

profile. The target state was then computed, always starting from 

[𝑥𝑡 , 𝑥̇𝑡 , 𝑧𝑡 , 𝑧̇𝑡 , 𝜃𝑡, 𝜃̇𝑡] and computing each state iteration according to 

𝑥𝑇𝑎𝑟𝑔𝑒𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 shown overleaf. This preserves the constraint 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

while providing realistic targets within the given time horizon. If instead we gave 

the default values of 𝑥𝑓𝑖𝑛𝑎𝑙 = [𝐵𝑎𝑟𝑔𝑒 𝑥, 0, 𝐵𝑎𝑟𝑔𝑒 𝑧, 0,0,0], the optimizer would 

have tried to reach 𝑥𝑓𝑖𝑛𝑎𝑙 within the given horizon, which leads to an infeasible 

solution. 

The Z-altitude profile was structured as: 

𝑧(𝑡) = 𝑧𝑀𝑎𝑥𝑒
−0.05𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡𝐵𝑎𝑟𝑔𝑒−𝑧 

 

 

 

 

 

 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  𝑐𝑇𝑥 

𝐴𝑥 = 𝑏 

𝐺𝑥 ≤ 𝐾ℎ 

𝑥𝑡 ∈ X 

Figure 17 Altitude profile against time to land. 
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Using this graph, the target state was obtained at each time step for the specified time 

horizon according to the equations shown below: 

𝒙𝑻𝒂𝒓𝒈𝒆𝒕 𝒕𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 =

[
 
 
 
 
 
 
 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +

(𝑥𝑓𝑖𝑛𝑎𝑙 − 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1 + 𝑒−𝑡

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑥𝑓𝑖𝑛𝑎𝑙

𝑧𝑡𝑎𝑟𝑔𝑒𝑡[𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 …𝑇ℎ]

𝑧̇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑒−𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0,2,𝑇ℎ)

𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ (0.3 + 𝑒−𝛽𝑡)
𝛾𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ]

 
 
 
 
 
 
 

 

 

This target provided a sigmoid-like trajectory with respect to 𝑥, 𝑧 as well as realistic 

values for 𝜃 and 𝜃̇, tuned using the baseline PID. As an example, using a time horizon 

of 30 and a time step of 0.1, the reference trajectory specifies that the rocket should 

decrease the 𝑥, 𝑧 displacements gradually as well as correct for 𝜃 over the entire 

period, not just one. The reference trajectory is shown in Figures 18. 

In Figure 19, the reference trajectory is shown as a black line and the optimized 

trajectory returned from the optimizer is shown in red. One can notice that the 

planned and target trajectories do not coincide at every point. This depends on the 

𝑒𝑟𝑟𝑜𝑟 value between target states and planned states. It is of utmost importance that 

the constraint for the final state |𝑥𝑡𝑎𝑟𝑔𝑒𝑡[𝑇ℎ] − 𝑥𝑡[𝑇ℎ]| ≤ 𝑒𝑟𝑟𝑜𝑟 is also included as 

without this the MPC would fail to provide a reasonable trajectory. 

 

 

 

 

 

 

 

 

 

 

 

- Optimized Trajectory 

- Reference trajectory 

Figures 18 & 19  Reference trajectory showing the x-z profile 

(left), and the corresponding simulation (right), showing planned 

(red) and target trajectories (black). 

𝑥𝑧 Trajectory Profile. 𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 16.5. 

𝐴
𝑙𝑡

𝑖𝑡
𝑢
𝑑
𝑒
 (
𝑧
)/

𝑚
𝑒𝑡

𝑒𝑟
𝑠 

𝑥-Position/𝑚𝑒𝑡𝑒𝑟𝑠 
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4.4 Linear Function Approximation Q-Learning 
 

RL refers to the episodic learning of an agent whose goal is to maximize the return. 

Different types of representations were discussed in Section 2.5, and this sub-chapter 

expands on Q-learning. 

 

Up till now, the benchmark PID and the MPC controllers were designed and their 

algorithms were outlined. The PID represented a classical control approach, whereas 

MPC uses a combination of state space representation with optimization methods. 

Given that MPC is derived from the same theoretical background as RL, both solve 

the same problem using the same framework in different ways. 

 

Whereas MPC uses an optimizer and a known model, RL approaches the problem 

from an interaction-reward point of view. In this section, the state is modeled by an 

algebraic sum of weighted features. Features can include the actual state 𝑥 used in 

MPC, binary states that are activated with a condition, transformed functions such 

as √𝑥2 + 𝑦2 and any other relevant functions. The general Q-learning algorithm is 

given by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, Background Algorithm 2 above uses discrete states and actions. On the 

other hand, our problem spans both continuous states as well as actions. This 

introduces the problem of the curse of dimensionality; if we try to discretize all states 

and actions, 𝑄(𝑠, 𝑎) becomes infeasible. 

 

Mnih et al. [48] chose to replace the tabular approach with a deep convolutional 

neural network trained using stochastic gradient descent and a replay mechanism 

which randomly samples previous transitions. The replay buffer was also used for 

this project in the implementation of the DDPG algorithm discussed in Section 4.5. 

The researchers effectively used the video images having a resolution of 84×84 at 

60Hz as input to the neural network, and output all actions as a posterior probability 

of the state. The highest valued action would then be executed. Tile coding and 

 

Background Algorithm 2 General Q-Learning 

 

Initialize 𝑄(𝑠, 𝑎) either optimistically or randomly, in tabular form (2-dimensional array) 

For every episode: 

 Initialize the state 𝑠 

 Until s is the terminal state, do: 

  Choose action 𝑎 from current state 𝑠 using an ε-greedy policy 

  Execute action 𝑎 and get reward, 𝑟, as well as the next state, 𝑠’ 

  𝑄(𝑠, 𝑎)  ←  𝑄(𝑠, 𝑎)  +  𝛼[𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)] 

  𝑠 ← 𝑠′ 
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Radial Basis Functions are other state representations that have proven to be 

effective in certain simple continuous state problems but were side-lined for a 

simpler solution in this implementation due to their scalability limitations. Note that 

these solve the problem of states, but not actions. 

 

Consider the true state-action matrix to be linearly approximated by another 

weighted matrix: 

𝑄(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎, 𝜔) 

 

The goal is to find a representation for 𝜔 that minimizes the cost function: 

 

min 𝐽(𝜔) = 𝐸 ቂ(𝑄(𝑠, 𝑎) − 𝑄(𝑠, 𝑎, 𝜔))
2
ቃ 

 

To this end, gradient descent can be used to find the local minimum in an online 

fashion: 

 

−
1

2
∇𝐽(𝜔) = 𝛼[𝑄(𝑠, 𝑎) − 𝑄(𝑠, 𝑎, 𝜔)]. ∇𝑄(𝑠, 𝑎, 𝜔) 

 

Where α is the learning rate and 𝑄(𝑠, 𝑎) represents the target. The target depends on 

how the problem is formed; Monte Carlo RL implies that 𝑄(𝑠, 𝑎) be equal to the 

average reward at the end of the episode, whereas for temporal differencing it would 

be the immediate reward following state 𝑠: 𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝜔). Using such a 

method, 𝑄(𝑠, 𝑎, 𝜔) still converges to the global solution if on-policy linear function 

approximation is used. 

 

The main algorithm used is shown below, with α being annealed from 0.01 to 0.001 

using an exponential decay. All features are explained overleaf. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Algorithm 3 Linear Function Approximation Q-Learning – Off Policy 

 

Initialize 𝜔 randomly from 𝑈[0,1] with size equivalent to the number of features. 

For every episode: 

 Until s is the terminal state, do: 

  Choose action 𝑎 using an ε-greedy policy, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑠, 𝑎 ∈ 𝐴, 𝜔) 

  Execute action 𝑎 and get reward, 𝑟, as well as the next state, 𝑠’ 

  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑏𝑢𝑖𝑙𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 (𝑠, 𝑎) 

  𝑄(𝑠, 𝑎, 𝜔) = 𝜔𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

  𝜔 ←  𝜔 +  𝛼[𝑟 + 𝛾 max
𝑎

𝑄(𝑠′, 𝑎, 𝜔) −𝑄(𝑠, 𝑎, 𝜔)] ∇𝜔 

  𝑠 ← 𝑠′ 
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The action space was discretized in the following way: 

 

𝐹𝐸 = {0.6, 0.8} 

𝐹𝑆 = {−1, 0, 1} 

𝜑 = {−5,−1.5, 0, 1.5, 5} 

The actions were built using each tuple combination of {𝑓𝐸 , 𝑓𝑆, 𝜑𝑖}, 𝑓𝐸 ∈ 𝐹𝐸 , 𝑓𝑆 ∈
𝐹𝑆, 𝜑𝑖 ∈ 𝜑, for a total of 30 action combinations. The discretization was chosen in 

an intuitive manner, making sure that the values made sense for the landing to be 

successful. A total of 20 features were used and are listed below in Table 1. These 

features represent a combination of action dependent features and general state 

descriptors, giving enough information for a robust and flexible representation of 

𝑄(𝑠, 𝑎, 𝜔). Features were experimented upon to a limited extent; there are many 

combinations and additional features that can be included, especially when the action 

space is discretized finely. 

 

This method proved to perform reasonably well given the fact that the state was 

approximated and the action space was discretized. It also laid the foundation for the 

more advanced DDPG algorithm, which was specifically created to cater for both 

continuous states and continuous actions. 

 

Table 1 Features used in linear function approximation Q-Learning 

Feature 

Type 
Feature Size Description 

G
en

er
a
l 

𝑠𝑡𝑎𝑡𝑒 𝒙 8 by 1 [𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇, 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑙𝑒𝑓𝑡, 𝑙𝑒𝑔 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑟𝑖𝑔ℎ𝑡] 

𝑘 1 by 1 𝐹𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

3 binary states 3 by 1 Thresholds for [𝑥̇, 𝑧̇, 𝜃̇], [1 𝑚/𝑠, 1 𝑚/𝑠, 5𝑜/𝑠 ] 

A
ct

io
n

 D
ep

en
d

en
t 

8 binary states. 

Conditions: 

 

𝜃 > 0 𝑎𝑛𝑑 𝐹𝑆 < 0 
𝜃 < 0 𝑎𝑛𝑑 𝐹𝑆 > 0 
𝜃 > 0 𝑎𝑛𝑑 𝜑 < 0 
𝜃 < 0 𝑎𝑛𝑑 𝜑𝑆 > 0 
𝜃 < 0 𝑎𝑛𝑑 𝜃̈ < 0 
𝜃 > 0 𝑎𝑛𝑑 𝜃̈ > 0 
𝑥 > 0 𝑎𝑛𝑑 𝑥̈ < 0 
𝑧̈ < 2 

8 by 1 

Simulate rocket kinematics using Equations 1-3 

and return 𝑥̈, 𝑧̈, 𝜃̈ using the current state and passed 

action. 
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4.5 Deep Deterministic Policy Gradient 
 

The notion of having policy evaluation separate from the policy improvement step 

is known as Actor-Critic (AC) architecture. The policy evaluation step, known as the 

critic, criticizes the actions chosen by the actor based on the target reward and 

outcome discrepancy as shown in Figure 20 [49]. 

The actor is represented by a function ℎ(𝑎𝑡|𝑠𝑡; 𝜃) that indicates the value of each 

action to be taken given the current state estimate. Actions are chosen in a 

probabilistic manner given by Gibbs softmax method; 

𝜋𝑡(𝑎|𝑠; 𝜃) = 𝑃[𝑎|𝑠; 𝜃] =
𝑒ℎ(𝑎|𝑠; 𝜃)

∑ 𝑒ℎ(𝑏|𝑠; 𝜃)
𝑏

 

The dependence on 𝜃 implies the representation of the policy as a probability 

distribution, a domain known as policy gradients. The idea is to adjust the parameters 

𝜃 in the direction of the gradient ∇𝜃𝐽(𝜋𝜃) = 𝐸[∇𝜃log (𝜋𝜃(𝑎|𝑠))𝑄𝜋(𝑠, 𝑎)] [50]. The 

actor adjusts 𝜃, whereas the critic estimates the state-action function 𝑄𝜔(𝑠, 𝑎) ≈

𝑄𝜋(𝑠, 𝑎) using a policy evaluation algorithm such as temporal differencing. Notice 

that this still relies on function approximation, however, the number of parameters 

is much greater, and features are created by the network and are not tuned manually. 

Lillicrap et al. [43] presented an AC, model-free algorithm based on deterministic 

policy gradients, that is capable of operating over continuous action spaces. They 

reported that using the same architecture, hyper parameters, as well as learning 

algorithm, the network solved more than 20 physics tasks, including control 

problems. However, they still used image data as input. Although this is certainly 

possible in the rocket landing simulation, it does not present a realistic and practical 

implementation. This is because control problems usually rely on sensory input, and 

not imagery input. In fact, noisy sensory measurements on board rockets, such as 

gyroscope data, are filtered, estimated and compensated for during flight. To this 

end, in this project, we refrained from using any video input. 

 

 

 

 

 

 

 

 
Figure 20 Actor-Critic architecture [49] 



37 

 

4.5.1 Architecture 
 

Lillicrap’s algorithm takes the concepts of AC and deterministic policy gradients and 

combines them with deep learning taken from DQN as well as Q-learning in order 

to have both continuous states and continuous actions. 

The authors highlight that although non-linear function approximators were avoided 

in the past due to instability and convergence problems, taking certain measures, 

such as introducing a replay buffer, makes them very effective. Consequently, neural 

networks were used in this case. 

The architecture involved: 

• A Neural network for the actor, 𝑄(𝑠, 𝑎|𝜃). 

• A Neural network for the critic, 𝜇(𝑠|𝜃). 

• Learning in mini-batches. 

• A replay buffer which stores a finite amount of (𝑠, 𝑎, 𝑟, 𝑠′) transitions. At 

each time step, the actor and critic are updated by sampling from the replay 

buffer. The replay buffer is essential because it provides uncorrelated 

samples, unlike the normal sequential steps required for the simulation. 

• Copies of both networks to estimate the target, improving convergence and 

stability. This is done because learning diverges if the critic network 

(𝑄(𝑠, 𝑎|𝜃)) is updated whilst also being used for calculating the target. The 

authors noted that both networks need to be copied. 

• Exponential averaging for the copied networks’ weights to track the actual 

networks’ weights. Changes are guaranteed to be slow, slowing down 

learning but improving stability. 

• Batch normalization for normalization of features across all dimensions. 

This makes the features have 0 mean and unit variance, effectively 

whitening the input given to each layer [51]. This was proven to be very 

effective, enabling higher learning rates and serves as a regulariser. 

• Maintaining exploration of the action space by adding a noise term to the 

output of the actor: 𝜇(𝑠′) = 𝜇(𝑠|𝜃) + 𝑁. The authors implement an 

Ornstein-Uhlenbeck process given by: 

 

 𝜇(𝑠′) = 𝜇(𝑠|𝜃) + 𝜔 ቀ𝜇𝑔𝑖𝑣𝑒𝑛 𝑚𝑒𝑎𝑛 − 𝜇(𝑠|𝜃)ቁ + 𝑁(0, 𝜎) 

The neural networks for the actor and critic were both created using 3 layers. The 

first two consisted of 300 and 400 neurons using 𝑟𝑒𝑙𝑢 and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation 

functions respectively. The last layer of the actor was set as the size of the action 

space (3), implemented with a 𝑡𝑎𝑛ℎ function to bind the outputs to their proper sizes. 

The critic simply had 1 output value with no implemented activation function. 

The algorithm is written overleaf, and Figure 21 graphically illustrates the 

architecture. 
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4.5.2 Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the critic is updated by minimizing the loss function given the new target 

obtained from the target network. 𝑄′(𝑠′, 𝜇′(𝑠′|𝜃𝜇′)) is obtained by inputting the new 

state as well as actions into the critic target network. This implies that the input to 

the critic network is equivalent to [𝑠𝑡𝑎𝑡𝑒𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠] whereas for the actor it is simply 

[𝑠𝑡𝑎𝑡𝑒𝑠]. Moreover, the actor uses the gradients of the critic as well as its own 

gradients to update the actual network. This is simply an extension of the chain rule 

with respect to the equation shown below: 

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟(𝑠, 𝑎) + 𝛾𝑄𝜇(𝑠′, 𝜇(𝑠′))] 

The description, as well as complete algorithm, is well documented in [43]. The 

reward in both linear function approximation and DDPG was given by: 

 

 

 

Main Algorithm 4 Deep Deterministic Policy Gradients [43] – without Batch Norm. 

 

Initialize actor and critic networks using Xavier initializer using the specified parameters. 

𝐴𝑐𝑡𝑜𝑟 = 𝜇(𝑠|𝜃𝜇), 𝐶𝑟𝑖𝑡𝑖𝑐 = 𝑄(𝑠, 𝑎|𝜃𝑄), where 𝜃𝑄 and 𝜃𝜇 indicate the weights of the 

respective networks. 

Initialize target networks 𝜇′ and 𝑄′, the same as the actor and critic respectively. 

Initialize Replay Buffer, 𝑅 

For every episode: 

 𝑠𝑡𝑎𝑡𝑒, 𝑠 = 𝑟𝑒𝑠𝑒𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 𝑠 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑠𝑡𝑎𝑡𝑒 

 Until s is the terminal state, do: 

  Choose action 𝑎; 𝑎 =  𝜇(𝑠|𝜃𝜇) + 𝑁 

  Execute action 𝑎 and get reward, 𝑟, as well as the next state, 𝑠’ 

  Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒) in 𝑅 

  Sample a random minibatch of 𝑁 transitions from 𝑅 to update the critic 

  If 𝑑𝑜𝑛𝑒 𝑖𝑠 𝑇𝑟𝑢𝑒 (terminal state): 

   Set 𝑦𝑖 = 𝑟𝑖 
  Else: 

   Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠′, 𝜇′(𝑠′|𝜃𝜇′)|𝜃𝑄′
) 

  Update the critic by minimizing the loss 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄)2)𝑖  

  Update the actor: 

   ∇𝜃𝜇𝜇 ≈
1

𝑁
∑ [∇𝑎𝑄(𝑠𝑖 , 𝜇(𝑠𝑖)|𝜃

𝑄)𝑖 ∇𝜃𝜇𝜇(𝑠𝑖|𝜃
𝜇)] 

  Update the target (copied) networks: 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ 

 

𝑟𝑒𝑤𝑎𝑟𝑑 =  −20√𝑥2 + 𝑧2 − 10√𝑥̇2 + 𝑧̇2 − 100𝜃 − 3𝜃̇

+ 2(𝑙𝑒𝑓𝑡𝑙𝑒𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡
+ 𝑟𝑖𝑔ℎ𝑡𝑙𝑒𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡

) − 0.03𝐸𝑛𝑔𝑖𝑛𝑒𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑑𝑒

− 0.003𝐸𝑛𝑔𝑖𝑛𝑒𝑃𝑜𝑤𝑒𝑟𝑀𝑎𝑖𝑛 
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 Figure 21 Visual guide for the DDPG algorithm 

𝑠′ 𝑠′ 

 

[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠] = [𝑥, 𝑎] 

𝑄(𝑠, 𝑎|𝜃𝑄) 

𝑪𝒓𝒊𝒕𝒊𝒄 𝑨𝒄𝒕𝒐𝒓 

𝑠𝑡𝑎𝑡𝑒 = 𝑥 

[𝐹𝑒 , 𝐹𝑠, 𝜑] 

𝜇(𝑠|𝜃𝜇) 

+ 

𝑁(0,1) 

(s,a,r,s’,done) 

(s,a,r,s’,done) 

𝑹𝒆𝒑𝒍𝒂𝒚 𝑩𝒖𝒇𝒇𝒆𝒓 

𝑠′, 𝑟, 𝑑𝑜𝑛𝑒 

 

 

 

𝜇′(𝑠|𝜃𝜇′) 𝑄′(𝑠, 𝑎|𝜃𝑄′) 

 

Store 

(s,a,r,s’,done) in 

Replay Buffer 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑸′(𝒔′, 𝝁′(𝒔′|𝜽𝝁′)|𝜽𝑸′
) 

Generate target to update critic 

network. Then update the actor 

and copied networks. 

Sample Replay Buffer to 

update the critic 

𝜇′(𝑠′|𝜃𝜇′) 
400 

300 

3 1 

 = 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 

Legend 
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4.6 Conclusion 
 

The designs of the 4 algorithms presented in the Background were presented and 

discussed in detail. Each algorithm was meant to serve as a framework for the next, 

with each method tackling a drawback that the previous one had. 

The AI section in particular was meant to contrast with the traditional control by 

solving the problem in a different way. It is clear that the AI algorithms have the 

advantage of handling model-free problems in a complex, yet effective way. This 

enables the same model to be trained on different problems without needing to 

redefine a model, an appealing attribute for control problems. 

MPC and RL were both derived from Bellman’s equations, but RL takes the dynamic 

programming approach to further simplify the problem to a model-free, online 

algorithm, whereas MPC uses the linearized model to predict future states and find 

optimal inputs that yield the lowest cost within the specified time horizon. 

The classical control approach requires quite a bit of design and knowledge on the 

subject to even be able to design the simplest algorithm. However, PIDs, LQR, and 

MPC are widely used in many systems in the industry, whereas AI is just starting to 

have a large, yet slow impact in many industries. 

These 4 algorithms were evaluated against 24 tests using different hyper parameters 

and algorithm variants. These are presented and discussed in the next section. 
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5 Evaluation and Discussion 
 

In this section, each controller is investigated individually with respect to different 

initial conditions, impulse and step disturbances, total reward, final cost, fuel 

consumption and successful landings. Moreover, a thorough analysis of the effect 

that multiple hyper parameters have on learning or computation is discussed for each 

controller excluding the PID (no hyper parameters exist for this case). Discussions 

follow the results of every controller, with comparisons being drawn to the 

benchmark PID controller or otherwise. Furthermore, trajectories and actions are 

analysed for certain tests to further contrast the controllers. 

5.1 Tests 
 

Each controller was evaluated with a total of 24 tests that vary the initial coordinates, 

translational 𝑥, 𝑧 velocities and 𝜃. In a small subset of tests, the rocket was exposed 

to impulse and step forces in the 𝑥 direction after a given time. The impulses are 

meant to represent sudden random forces that the rocket might experience, such as 

an external force, whereas the constant force is meant to represent a constant side 

wind. The tests are outlined in Table 2. 

Table 2 Tests performed on each controller varied in initial conditions and external disturbances. 

 
Test 

Number 

Initial Conditions Disturbances 

𝒙 𝒛 𝒙̇ 𝒛̇ 𝜽 𝜽̇ Step Impulse 

No 

Translational 

Velocity 

1 0.5 1 0 -15 0 0 - - 

2 0.5 1 0 -15 5 0 - - 

3 0.3 1 0 -15 0 0 - - 

4 0.3 1 0 -15 5 0 - - 

5 0.3 1 0 -15 -5 0 - - 

𝒙 

translational 

velocity 

varied 

6 0.5 1 3 -15 0 0 - - 

7 0.5 1 -3 -15 5 0 - - 

8 0.3 1 3 -15 0 0 - - 

9 0.3 1 -3 -15 5 0 - - 

10 0.3 1 -3 -15 -5 0 - - 

𝒛 

translational 

velocity 

increased 

11 0.5 1 3 -19 0 0 - - 

12 0.5 1 -3 -19 5 0 - - 

13 0.3 1 3 -19 0 0 - - 

14 0.3 1 -3 -19 5 0 - - 

15 0.3 1 -3 -19 -5 0 - - 

Initializations 

with higher 𝜽 

16 0.5 1 0 -15 10 0 - - 

17 0.3 1 0 -15 10 0 - - 

18 0.3 1 0 -15 -10 0 - - 

Added step 

forces to tests 

1-3 

19 0.5 1 0 -15 0 0 (12, 0) - 

20 0.5 1 0 -15 5 0 (12, 0) - 

21 0.5 1 0 -15 -5 0 (12, 0) - 

Added 

impulses to 

tests 1-3 

22 0.5 1 0 -15 0 0 - (2000, 0) 

23 0.5 1 0 -15 5 0 - (2000, 0) 

24 0.5 1 0 -15 -5 0 - (2000, 0) 

Units Norm. Norm. m/s m/s Deg. Deg./s 𝑁 𝑁𝛿𝑡 
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𝑥 and 𝑧 coordinates are normalized, meaning that 𝑥 = 0.5 refers to the middle of the 

simulation space. Translational velocities are quoted in meters/second, whereas 

angles are all in degrees. Where applicable, the impulses were applied precisely 1 

second after the simulation started, whereas forces were applied from time 𝑡 = 0 and 

continued until termination. Both forces and impulses were applied to the center of 

moment of the rocket. Note that in the simulation, an impulse represents a force that 

is applied only at time 𝑡 = 𝑡𝑖; that is the normal force multiplied by the time step. 

The difference between forces and impulses is that forces act over time, whereas 

impulses are able change to the velocity of an object immediately. 

5.2 Test Measures 
 

Controllers were evaluated with respect to (i) total reward, (ii) final cost, (iii) fuel 

consumption and (iv) successful landings. The percentage use of each action was 

also included in each result due to the insight it gives on the measures that the 

controller took to land the rocket successfully. Together with the average rocket 

angle throughout each test, 𝜃𝑎𝑣𝑒𝑟𝑎𝑔𝑒, the results provide an objective view of how 

each controller performed as well as what happened. For instance, a controller 

experiencing |𝜃𝑎𝑣𝑒𝑟𝑎𝑔𝑒| > 8𝑜, high use of gas thrusters with a landing on one leg 

indicates that the rocket landed with a high angle of attack and eventually toppled 

over. 

The metrics are defined as follows. The total reward is given by: 

𝑟𝑒𝑤𝑎𝑟𝑑 =  −20√𝑥2 + 𝑧2 − 10√𝑥̇2 + 𝑧̇2 − 100𝜃 − 3𝜃̇

+ 2(𝑙𝑒𝑓𝑡𝑙𝑒𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡
+ 𝑟𝑖𝑔ℎ𝑡𝑙𝑒𝑔𝑐𝑜𝑛𝑡𝑎𝑐𝑡

) − 0.03𝐸𝑛𝑔𝑖𝑛𝑒𝑃𝑜𝑤𝑒𝑟𝑆𝑖𝑑𝑒

− 0.003𝐸𝑛𝑔𝑖𝑛𝑒𝑃𝑜𝑤𝑒𝑟𝑀𝑎𝑖𝑛 

𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡) − 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡 − 1) 

The reward penalizes both certain states as well as actions. It forms an essential part 

of RL, therefore positive rewards were rewarded for actions that represent “good” 

results, such as legs touching the barge. 

The final cost is computed by: 

𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝜔𝑇(𝑠𝑡𝑎𝑡𝑒𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠𝑡𝑎𝑡𝑒+) 

Where 

𝑠𝑡𝑎𝑡𝑒+ = |[𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇, 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑]| 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝜔 = [2,1,1.5,3,4,2,1] 

The final cost provides a linear, monotonic metric to judge the landing accuracy as 

well as resources used to get there. It ranges from (−∞, 0], with 0 being the best 

score. The states 𝑥 and 𝑧 in the simulation’s 𝑠𝑡𝑎𝑡𝑒 encapsulate the difference from 

the target. Thus, the target state, 𝑠𝑡𝑎𝑡𝑒𝑡𝑎𝑟𝑔𝑒𝑡, represented the 0 vector. 
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The fuel consumption is represented by a linear weighted combination of 𝐹𝐸 and 𝐹𝑆. 

The mass of the rocket was divided into 80% dry mass, and 20% fuel mass. The 

rocket weighed 25.222 kg in total after scaling, computed from: 

𝑚𝑎𝑠𝑠 =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑎𝑟𝑒𝑎

𝑆𝐶𝐴𝐿𝐸2
 

=
5. (𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑎𝑖𝑛 𝑏𝑜𝑑𝑦×𝑏𝑟𝑒𝑎𝑡ℎ𝑚𝑎𝑖𝑛 𝑏𝑜𝑑𝑦) 

302
 

=
5. (227×20)

900
 

= 25.222 𝑘𝑔 

Therefore, the fuel represented just 5.04 kg of the rocket and decreased linearly 

according to the equation: 

𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 0.009[𝐹𝐸 .𝑀𝐸𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 + 𝐹𝑆𝑆𝐸𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡]  

= 0.009 [𝐹𝐸

𝑀𝑎𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑃𝑜𝑤𝑒𝑟

𝑆𝑖𝑑𝑒 𝐸𝑛𝑔𝑖𝑛𝑒 𝑃𝑜𝑤𝑒𝑟
+ 𝐹𝑆] 

The burn rate was adjusted empirically from multiple simulation runs. In reality, the 

simulated rocket would have weighed 22,699.8 kg, which is an estimate for a small 

first stage rocket on re-entry. 

Finally, the landing metric was used to indicate whether the rocket landed 

successfully on both legs, a single leg, or did not land at all; 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = {1,0,−1} 
respectively. Note that the speed with which the rocket landed was only taken into 

consideration in the 𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡. Therefore, even though a landing with high velocity 

would result in the rocket’s destruction, the landing metric would still indicate a 

successful landing. This highlights why multiple metrics were needed. 

5.3 Test Conditions 
 

In all tests, the barge length covered 46% of the total width of the simulator, 

approximately 5 times the length between the rocket legs as shown in Figure 22. The 

barge was left static, with the landing target located always at the center point 

(𝑥 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑧 − 𝑧𝑡𝑎𝑟𝑔𝑒𝑡) = (𝑥 −
𝐵𝑎𝑟𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

2
, 𝑧 − 𝐵𝑎𝑟𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡).  

 

The maximum main engine power was limited to 60% of its maximum value, 

whereas if activated, the side engines had to operate between 50%-100% of the total 

power. All other variables were kept constant unless otherwise specified in each 

individual test. 



44 

 

 

5.4 PID Results 
 

Recall that classical control was included as a benchmark, and so the 3 PIDs were 

designed by taking strong independence assumptions on certain states, and later 

introducing the ignored states as part of the error of each PID. This is the empirical 

method of finding feedback weights between states to aid decoupling. 

Table 3 shows the results for the PID control, where green highlights better or more 

favourable numerical values, whereas red indicates worse. Blue highlights higher 

values but indicates neutrality. 

For its simplicity, the 3 PIDs managed to achieve quite a good result for a wide range 

of conditions. This is not to say that the control is optimal; in fact, some defects 

resulting from the assumptions can be noticed even by visual inspection of the 

simulation. 

As an example, in test 3 the rocket attempted to navigate to the target starting from 

𝑥 = 0.3 with a clear intention of keeping the rocket upright, evident from the low 

value of 𝜃𝑎𝑣𝑒𝑟𝑎𝑔𝑒. The controller made good use of 𝜑, as shown by the percentage 

of time spent with |𝜑| > 3, whereas 𝐹𝑠 was used sparingly. The rocket landed in the 

water, even though proper balancing was achieved. 

Tests 9 and 17 show the use of 𝐹𝑆 for higher lander angles. In test 17, the moment 

caused by 𝑥̇ in the direction of the initialized 𝜃 was too high for it to recover, but 

was successful in test 18. It comes to no surprise that 𝐹𝑆 is used to a higher degree 

for higher values of 𝜃. 

Figure 22 Simulation showing the relative dimensions of the barge to the simulator used during the 

tests. The middle of the barge represented the landing target location. 
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Interestingly, increasing 𝑧̇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 decreases the amount of fuel consumed whilst still 

achieving high rewarding landings. At first this might seem counterintuitive, but 

upon further inspection, this is dependent on the tuning of the PID parameters that 

control 𝐹𝐸, particularly 𝐾𝐷. The PID was designed for the rocket to land in a smooth 

and slow manner, ideally with 𝑧̇ < 2𝑚/𝑠 so the legs can absorb the rest of the forces. 

However, this also makes for a slow descent, burning more fuel in the process. Not 

surprisingly, the fuel consumed in disturbance tests is on average higher than the rest 

of the tests, but the percentage of time that 𝐹𝐸 and 𝐹𝑆 were used had no significant 

differences. This suggests that in the disturbance tests, 𝐹𝐸 and 𝐹𝑆 were throttled 

higher to compensate for the external disturbances. 

A valid point to think about is why 𝐹𝐸 is not used 100% of the time. 𝐹𝐸 cannot be 

less than 0, but the PID still tries to make it so since no constraint was included. 

Thresholding can limit 𝐹𝐸 to any level, and although in real rocket engines the engine 

can be throttled, it is never switched off completely. Figure 23 illustrates the control 

actions taken in tests 19 and 23. Notice the saturating 𝐹𝐸 and higher sinusoidal effect 

of 𝜑 in the step disturbance test. If 𝐾𝑝 is large enough in the 𝜑-PID, this sinusoidal 

effect leads to unstable behaviour. The impulse in test 23 was applied in the direction 

of the target, and since it is applied to the center of moment the rocket remained 

stable. 

Table 3 PID controller numerical results for the 24 tests. 

 

 

# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 27.52 -6.00 2.75 2.84 1.00 0.38 0.01 0.01 0.38

2 24.04 -6.96 2.48 0.75 1.00 0.48 0.17 0.00 0.38

3 -11.62 -13.64 2.39 0.62 0.00 0.61 0.03 0.00 0.52

4 21.58 -6.49 2.77 3.61 1.00 0.30 0.35 0.00 0.45

5 29.27 -4.80 2.65 0.61 1.00 0.41 0.07 0.07 0.38

6 28.91 -4.85 2.57 0.88 1.00 0.38 0.00 0.06 0.41

7 22.99 -7.37 2.52 1.07 1.00 0.59 0.39 0.00 0.49

8 28.76 -5.29 2.57 1.98 1.00 0.71 0.11 0.08 0.56

9 -24.12 -16.20 3.00 13.49 0.00 0.65 0.98 0.00 0.75

10 28.53 -4.94 2.64 0.66 1.00 0.35 0.17 0.00 0.46

11 27.99 -5.40 1.67 1.92 1.00 0.37 0.00 0.10 0.32

12 21.26 -7.67 1.98 0.89 1.00 0.38 0.21 0.00 0.31

13 35.01 -4.08 1.30 1.32 1.00 0.36 0.01 0.07 0.38

14 -10.64 -11.06 2.03 1.26 1.00 0.57 0.59 0.00 0.57

15 27.67 -6.44 1.79 -0.22 1.00 0.34 0.03 0.00 0.27

16 23.89 -5.32 2.48 5.65 1.00 0.64 0.45 0.00 0.41

17 -76.64 -13.75 2.95 17.78 -1.00 0.58 0.88 0.00 0.82

18 28.25 -4.83 2.60 -0.60 1.00 0.40 0.04 0.15 0.38

19 31.24 -5.16 2.56 -0.39 1.00 0.71 0.00 0.00 0.40

20 28.75 -4.93 2.64 0.99 1.00 0.40 0.06 0.00 0.29

21 23.11 -7.35 2.82 0.72 1.00 0.34 0.00 0.12 0.36

22 26.71 -6.46 2.67 -0.09 1.00 0.41 0.00 0.00 0.27

23 29.96 -5.60 2.57 0.74 1.00 0.41 0.12 0.01 0.36

24 22.74 -7.87 2.91 0.46 1.00 0.40 0.00 0.08 0.36

17.30 -7.19 2.47 2.37 0.83 0.46 0.19 0.03 0.43

24.36 3.15 0.41 4.25 0.47 0.13 0.27 0.05 0.13

Mean

Std. Dev.

Added 

impulses to 

tests 1-3

Barge length = 46% of width
Percentage of time that 

action was utilised (0-1)

No 

Translational 

Velocity

x translational 

velocity 

varied

z translational 

velocity 

varied

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3
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Figure 24 shows the correlation between the total reward and final costs obtained 

across all tests. The positive correlation is apparent for all tests, but outliers can still 

occur. For instance, although the rocket still landed successfully in test 14, the final 

cost suggests that the landing was not as desired; close to the target, upright, with 

low terminal velocity. All the above analysis serves as a preliminary for the other 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24 Final Cost vs. Total Reward for the different tests. The scatter plot shows the correlation 

between having a higher reward and having a more successful landing. 

Figure 23 Control actions for 400 iterations for tests 19 (top) and 23 (bottom). 
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5.5 MPC Results 
 

The MPC algorithm was outlined in Main Algorithm 2 in Section 4.3.2. Various 

hyper parameters exist for such a model, including time and control horizons, cost 

matrices, objective function formulation, model linearization and more. Like LQR, 

MPC still relies on a state space model, therefore the model was linearized by finite 

differences, with the reference trajectory being generated on every iteration. 

Preliminary testing on the effects of cost matrices Q and R as well as variable time 

and control horizons were conducted. Following this, a single model was evaluated 

against the rest of the controllers. 

Unlike the rest of the models, in MPC the “untransformed state” was used. This 

means that the values in the state were not normalized or adjusted in any way, and 

the units represent the actual units of the simulation; meters, kilograms, Newtons. 

This is because linearization took place using finite differences by instantiating 

multiple simulations in parallel and adjusting each state and action separately to 

inspect the change in states. This was used to compute 𝛿𝑥𝑡+1 = 𝐴𝛿𝑥𝑡 + 𝐵𝛿𝑢𝑡. 

5.5.1 Effect of Costs Q and R 
 

Recall that the MPC algorithm is structured as follows: 

𝑄 and 𝑅 reflect the balance between state deviation and action usage respectively. 

Choosing the diagonal weights to be equal to 
1

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑟𝑟𝑜𝑟2 and then using trial 

and error until a suitable response is achieved is a widely-used method in MPC. The 

time horizon, 𝑇ℎ was kept at 10 time steps, whilst 𝑇𝑐 was held at 1. 

Let: 

𝑆𝑡𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 = [±2 𝑚,±2 𝑚/𝑠,±0.5 𝑚,±2 𝑚/𝑠,±3𝑜, ±5𝑜/𝑠] 

Then: 

𝑄 = 𝑘[0.25, 0.25, 4, 0.25, 365, 131]. 𝐼 

𝑅 = 𝜌[0.01, 0.1, 0.001]𝐼 

Where 𝑘 and 𝜌 were adjusted to test the effect that they had on control performance. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐽 =  ෍ (𝑥𝑡
𝑇

𝑡𝑖+𝑇ℎ

𝑡=𝑡𝑖

𝑄𝑥𝑡 + 𝑢𝑡
𝑇𝑅𝑢𝑡 + 𝛼∆𝑢𝑡

𝑇𝑅∆𝑢𝑡) 

𝑢𝑡 ∈ U, 𝑥𝑡 ∈ X 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 
|𝑥𝑡𝑖+𝑇ℎ

− 𝑥𝑡𝑎𝑟𝑔𝑒𝑡| ≤ error 

𝑥𝑡𝑖
= 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝑓𝑜𝑟 𝑡 = 𝑡𝑖 …𝑇ℎ 
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Test 1 was used as a preliminary test with 𝑘 = {1, 100, 1000, 1000} and 𝜌 =

{10, 1, 0.1, 1𝑒−10} for a total of 4 runs. The last test represents an extreme case, 

where almost no penalty is given to the inputs. 

Table 4 below shows the results of the tests discussed above. Notice how changing 

𝑝 to a lower value did not have much of an impact, unless a very low value was 

assigned to it, in this case 1𝑒−10. This increased the use of 𝐹𝑙 and 𝐹𝑟, but still resulted 

in an unsuccessful landing. Increasing the penalty for 𝐹𝐸 also had the same effect, 

without requiring such a low weight value.  

The tests were repeated, and in some cases, completely different results were 

obtained. Such is the case in the successful landing of test 2. Even though all initial 

conditions were the same, tests 2 and 3 obtained completely opposite results, with 

the second test exhibiting proper control. This highlights the downfall of MPC in 

this problem; we are dealing with a non-linear and coupled problem, and 

convergence is not guaranteed. Solutions given by the optimizer differ, and non-

convexity makes the problem susceptible to local optima. The problem with the 

control is evident from the high percentage use of |𝜑| > 3 across all failures. 

To amend this, the penalty for using 𝜑 was increased to 10, however, little difference 

was observed. The weight was further increased whilst keeping the rest of the 

weights unchanged. This came at the cost of accuracy, as the trajectory no longer 

followed the target, meaning the optimizer failed to find a solution for high values 

of 𝑅3. 

 

5.5.2 Effect of Time and Control Horizons 
 

𝑇ℎ and 𝑇𝑐 were varied using the following values: 𝑇ℎ = {5, 10, 25} for each value of 

𝑇𝑐 = {1, 2, 5} for a total of 9 tests. The chosen test was still Test 1. Note that the time 

horizon reflects how many time steps the optimizer should predict using the 

linearized state. Since the simulation runs with a frequency of 60𝐻𝑧, a 𝑇ℎ of 60 

represents a prediction horizon of 1 second. 

 

 

 

Table 4 Results from testing different combinations of magnitudes for cost matrices Q and R. 

Test Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

(k, p) = (1, 10) -76.52 -28.44 0.52 -9.03 -1.00 0.99 0.00 0.00 0.98

32.23 -3.70 0.84 2.02 1.00 0.30 0.00 0.00 0.53

-79.01 -30.80 0.48 -9.62 -1.00 0.99 0.00 0.00 0.94

(k, p) = (1000, 0.1) -81.07 -31.93 0.42 -10.10 -1.00 0.98 0.00 0.00 0.97

(k, p) = (1000, 1e-10) -73.08 -28.40 0.68 11.09 -1.00 0.99 0.24 0.14 0.80

Time Horizon = 10, Control Horizon = 1

Percentage of time that 

action was utilised (0-

1)

(k, p) = (100, 1)
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If a low 𝑇𝑐 is used, then we would effectively be trying to find the best 𝑛𝑇𝑐
 actions 

to take given the lowest cost (or highest reward) during the next 𝑇ℎ time steps. If 

𝑇𝑐 = 1, then the solution would be similar, but not equivalent to the greedy policy in 

RL. 

 

The MPC problem was formulated as suggested in the literature, however, even 

though the predicted trajectory agreed with the target in all iterations to a certain 

specified degree, the actions taken did not reflect such behaviour. This is illustrated 

in Figure 25 overleaf, where the optimized trajectory based on the linearized model 

agreed with the reference trajectory with a tolerance of ±0.1. Despite this, the 

followed trajectory using the returned actions varied drastically from that planned 

during the next 10 iterations (𝑇ℎ = 30, 𝑇𝑐 = 10). 

 

Table 5 clearly shows MPC’s unsuccessful attempts, with low total reward and no 

successful landings. Increasing the penalty for 𝜑 had little effect, and the principal 

problem with control lies with the over usage of 𝜑. Interestingly, being greedy does 

not guarantee optimal results, on the contrary, the worst results were obtained with 

𝑇𝑐 = 1. This is the same practical problem as the cliff walk example shown in Figure 

8, where greedy actions did not necessarily imply success. This also contrasts with 

the expected result as well as Garcia’s suggestion [31] discussed in Section 2.4.5. 

The low fuel consumption but high use of 𝐹𝐸 suggests that 𝐹𝐸 was being used at its 

lower threshold. Upon investigation, this turned out to be the case, where the 

optimizer was choosing 𝐹𝐸 ≈ 0.5 − 0.6 for each iteration irrespective of state. 

However, 𝐹𝑆 was being used in an oscillatory fashion to try to maintain the rocket 

upright. In turn, the problematic use of 𝜑 negated this effort, causing failures.

Th Tc Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 -73.82 -28.02 0.59 9.17 -1.00 0.99 0.15 0.08 0.96

2 -28.02 -26.52 0.61 9.97 -1.00 0.99 0.24 0.10 0.97

5 -17.84 -31.01 0.49 13.62 -1.00 0.99 0.21 0.10 0.99

1 -71.18 -26.06 0.67 -7.85 -1.00 0.99 0.16 0.23 0.98

2 -26.59 -28.88 0.72 -6.98 -1.00 0.99 0.18 0.17 0.97

5 -16.63 -30.39 0.64 -6.81 -1.00 0.99 0.22 0.22 0.99

1 -29.87 -29.56 0.59 -11.42 -1.00 0.99 0.22 0.34 0.96

2 -74.03 -27.91 0.63 9.63 -1.00 0.99 0.28 0.21 0.97

5 -18.69 -30.74 0.43 -13.74 -1.00 0.98 0.23 0.38 0.93

1 -21.21 -29.98 0.52 -10.67 -1.00 0.99 0.44 0.44 0.95

2 -31.58 -32.11 0.49 10.70 -1.00 0.99 0.35 0.51 0.99

5 -17.85 -30.65 0.65 -11.08 -1.00 0.99 0.33 0.38 0.95

10

25

50

Percentage of time that R = [0.1, 0.01, 10], Q = 100*[0.25, 4, 0.25, 0.25, 365, 131

5

Table 5 Time horizon and control horizon grid search results for Test 1. 
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5.5.3 Conclusion 
 

The complete result with the corresponding hyper parameters is shown in Table 6 

overleaf. The failure of MPC can be attributed to multiple variables, including the 

type of optimizer used. If the system was linear and the objective function was 

convex, the optimization problem would be convex, opening the entire field of 

convex programming. However, linearization and no convergence guarantees 

hindered MPC from being an effective controller. Different targets were used and 

adjusted to try and mitigate the problem, including using the difference of the target 

as the actual target. Several hyper parameters were adjusted, but 𝜑 remained a 

problem. 

Creating a hybrid MPC and 𝜑-PID controller enables the problem to be defined in a 

linear manner, guaranteeing observability and controllability in control terms. 

Although this partially solves the problem of 𝜑, it also weakens the use of MPC since 

the predicted states no longer include the dynamics of 𝜑. RL techniques become 

even more applicable when such problems are presented, and to that end linear 

function approximation as well as DDPG models are presented in the next sections. 

 

 

 

 

 

 

 

 

Reference trajectory 

and optimized 

trajectory for the next 

30 states, or 0.5 

seconds. 

(𝑥𝑜 , 𝑧𝑜) 

Actual trajectory 

followed for the next 

10 steps using the 

returned actions. 

Figure 25 Target, planned and actual trajectories followed for a single iteration whilst running Test 1. 

Ref. 

Opt. 

Actual 
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# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 -18.46 -34.17 0.40 -13.31 -1.00 0.98 0.45 0.30 0.86

2 -17.28 -33.84 0.33 16.92 -1.00 0.98 0.48 0.46 0.93

3 -18.55 -38.47 0.58 10.62 -1.00 0.99 0.21 0.73 0.94

4 -16.20 -32.89 0.62 13.23 -1.00 0.99 0.50 0.41 0.95

5 -19.56 -40.01 0.29 -20.00 -1.00 0.98 0.24 0.73 0.88

6 -21.09 -37.95 0.36 -15.65 -1.00 0.98 0.69 0.29 0.90

7 -18.66 -38.77 0.26 19.41 -1.00 0.97 0.42 0.53 0.97

8 -19.40 -38.39 0.44 11.16 -1.00 0.98 0.26 0.66 0.93

9 -18.09 -40.94 0.29 20.04 -1.00 0.98 0.61 0.37 0.88

10 -20.64 -45.39 0.36 -17.39 -1.00 0.98 0.39 0.45 0.96

11 -19.70 -44.53 0.40 -15.94 -1.00 0.98 0.48 0.36 0.91

12 -18.13 -44.63 0.25 21.72 -1.00 0.97 0.69 0.22 0.86

13 -20.34 -46.41 0.36 -16.16 -1.00 0.98 0.29 0.69 0.92

14 -17.28 -51.63 0.22 19.76 -1.00 0.97 0.16 0.81 0.94

15 -19.76 -47.49 0.40 -18.14 -1.00 0.98 0.46 0.45 0.91

16 -16.80 -36.78 0.22 22.82 -1.00 0.97 0.32 0.58 0.97

17 -17.82 -37.69 0.33 22.86 -1.00 0.98 0.48 0.41 0.87

18 -16.91 -40.62 0.18 -23.61 -1.00 0.96 0.73 0.19 0.88

19 -18.01 -31.08 0.66 -10.04 -1.00 0.99 0.38 0.55 0.95

20 -17.46 -34.58 0.29 18.03 -1.00 0.98 0.73 0.24 0.93

21 -18.29 -34.97 0.29 -18.65 -1.00 0.98 0.73 0.24 0.88

22 -19.09 -29.86 0.55 -8.69 -1.00 0.99 0.39 0.53 0.99

23 -17.86 -34.67 0.36 16.53 -1.00 0.98 0.49 0.49 0.92

24 -18.92 -35.94 0.33 -18.99 -1.00 0.98 0.33 0.59 0.89

-18.51 -38.82 0.37 0.69 -1.00 0.98 0.46 0.47 0.92

1.23 5.41 0.12 17.54 0.00 0.01 0.17 0.17 0.04

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3

Added 

impulses to 

tests 1-3

Mean

Std. Dev.

R = [0.1, 0.01, 10], Q = 100*[0.25, 4, 0.25, 0.25, 365, 131, Th = 10, Tc = 5 Percentage of time that 

No 

Translational 

Velocity

x translational 

velocity 

varied

z translational 

velocity 

varied

Table 6 MPC numerical test results 
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5.6 Linear Function Approximation Q-Learning Results 
 

The results of two models trained using Main Algorithm 3 outlined in Section 4.4 

are presented in this sub-chapter. 

The networks differ in the amount of action discretization, with one network having 

a wider range of values for each action. The objective was to investigate the effect 

that higher numbers of actions have on both learning and performance. It is intuitive 

to assume that higher discretization leads to slower learning but better performance. 

However, possibly simpler control could still be learned by the low-action network, 

suggesting that the problem can be tackled with simpler methods. 

A slight complication arose when defining the actions. The rocket is meant to land 

using 𝐹𝐸 , 𝐹𝑆, 𝜑 simultaneously. However, the Q-Learning framework was originally 

devised for discrete, single action environments, such as a game having controls 

{𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}. An incorrect controller would have been built if we defined 

the problem in this way since the degrees of freedom of the rocket cannot be 

controlled by a single action. To this end, actions were defined as combinations 

stored in tuples: 

Model 1 

𝐹𝐸 = {0.6, 0.8} 

𝐹𝑆 = {−1, 0, 1} 
𝜑 = {−5,−1.5, 0, 1.5, 5} 

Action 1 (0.6,−1,−5) 

Action 2 (0.6,−1,−1.5) 

… … 

Action 𝑛 (0.8, 1, 5) 

 

Where 𝑛 = 30 

Model 2 

𝐹𝐸 = {0.6, 0.7, 0.75, 0.8, 0.9} 

𝐹𝑆 = {−1, 0, 1} 

𝜑 = {−8,−6,−4,−2, 0, 2, 4, 6, 8} 
Where 𝑛 = 135 

 

During learning, state initialization took place using random 𝑥̇, 𝑧̇ limited by 

thresholds. This was done by simply applying a force to the center of the rocket. 

Episodic randomness is necessary for learning the control in different states, and to 

decorrelate states, preventing local optima. 
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The 10-period moving average learning curve for the high discretization model is 

shown in Figure 26. In RL, the total reward is the typical performance metric used 

to judge whether models are in fact learning. This tends to be very noisy since small 

weight changes affect the policy in multiple states. Although Mnih et al. [48] 

suggested the use of a more stable metric based on the policy’s estimated action-

value function Q, this metric was not included in this study. 

Learning took place using different learning rates and number of episodes. Figure 26 

suggests that the network did not converge to an optimal policy. Recall that one 

disadvantage of Q-learning is that the model needs to learn the correct policy in every 

state through multiple episodes. This requires learning on the order of 100,000 

episodes. The sudden dips in reward can be due to randomness and unlearnt states. 

However, the networks show clear signs of learning, with the high action 

discretization network having a more stable learning curve. This is expected since 

finer control leads to less abrupt actions with changes in the weights. Recall that the 

implemented Q-Learning algorithm utilizes off-policy learning, tending towards 

greedier actions whilst sacrificing convergence. 

The initial weights were sampled from a normal distribution having mean 0 and 

variance 1. The learning rate, α, was set at a constant of 0.001, whereas ε was 

annealed with every iteration, 𝑛, according to 𝜀. 0.9999𝑛. This aids greedy behaviour 

as learning progresses, improving convergence. 

Table 8 and Table 7 show the results for the high and low discretization models 

respectively. One can immediately contrast these against the PID results, where 𝐹𝑙 

isn’t used at all and instead 𝐹𝐸 and 𝜑 are used almost all the time, especially in the 

absence of disturbances.

Figure 26 Learning curves for the high action discretization showing 5000 episodes of learning. 
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# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 32.13 -3.41 1.13 3.46 1.00 0.33 0.00 0.04 0.14

2 -16.62 -21.93 0.98 2.36 0.00 0.93 0.00 0.10 0.93

3 -12.71 -15.58 1.08 2.90 0.00 0.94 0.00 0.08 0.58

4 -25.94 -22.05 1.09 10.20 -1.00 0.99 0.00 0.20 0.93

5 -76.46 -32.32 0.62 12.66 -1.00 0.99 0.00 0.26 0.95

6 -68.98 -25.23 0.83 13.20 -1.00 0.99 0.00 0.23 0.95

7 -84.77 -35.30 0.43 18.10 -1.00 0.98 0.00 0.00 0.98

8 30.84 -4.72 1.20 1.86 1.00 0.40 0.00 0.08 0.43

9 -88.39 -40.48 0.47 18.35 -1.00 0.98 0.00 0.00 0.98

10 -85.42 -37.38 0.66 12.21 -1.00 0.99 0.00 0.16 0.96

11 29.29 -5.01 0.65 0.12 1.00 0.26 0.00 0.05 0.62

12 -87.07 -44.85 0.45 18.87 -1.00 0.98 0.00 0.00 0.98

13 32.37 -4.06 0.63 2.75 1.00 0.20 0.00 0.04 0.74

14 -92.44 -48.19 0.53 18.54 -1.00 0.99 0.00 0.00 0.99

15 -88.70 -46.30 0.56 13.31 -1.00 0.99 0.00 0.22 0.95

16 -37.03 -25.93 0.97 18.69 -1.00 0.99 0.00 0.00 0.99

17 -83.01 -36.98 0.54 18.43 -1.00 0.99 0.00 0.00 0.99

18 -73.01 -27.72 0.63 4.75 -1.00 0.99 0.00 0.43 0.97

19 -67.10 -54.36 2.41 3.73 -1.00 1.00 0.00 0.04 0.81

20 -72.62 -19.65 1.38 12.31 -1.00 0.99 0.00 0.11 0.94

21 -70.26 -22.86 1.07 10.61 -1.00 0.99 0.00 0.20 0.97

22 -77.84 -47.90 2.19 1.00 -1.00 1.00 0.00 0.17 0.83

23 -63.24 -17.09 1.13 2.58 0.00 0.77 0.00 0.14 0.95

24 -73.62 -27.19 0.63 10.97 -1.00 0.99 0.00 0.28 0.95

-50.86 -27.77 0.93 9.66 -0.54 0.86 0.00 0.12 0.85

42.62 14.74 0.49 6.59 0.76 0.26 0.00 0.11 0.21

Barge length = 46% of width Percentage of time that 

Mean

Std. Dev.

Added 

impulses to 

tests 1-3

No 

Translational 

Velocity

x translational 

velocity 

varied

z translational 

velocity 

varied

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3

Table 7 Low discretization function approximation test results 

Table 8 High discretization function approximation test results 

# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 30.06 -3.99 0.99 -0.47 1.00 0.36 0.00 0.14 0.00

2 -76.41 -28.40 0.99 11.66 -1.00 0.99 0.00 0.00 0.99

3 -19.43 -22.91 0.93 9.56 0.00 0.98 0.00 0.04 0.72

4 -81.88 -32.51 1.01 7.17 -1.00 0.99 0.00 0.00 0.99

5 -77.57 -32.11 0.54 10.00 -1.00 0.99 0.00 0.29 0.92

6 -12.94 -15.86 0.99 5.96 1.00 0.89 0.00 0.22 0.27

7 -85.08 -36.08 0.44 17.97 -1.00 0.98 0.00 0.00 0.98

8 -65.90 -24.38 0.88 11.91 -1.00 0.94 0.00 0.08 0.92

9 -87.77 -40.81 0.55 18.80 -1.00 0.99 0.00 0.00 0.99

10 -83.93 -36.57 0.42 12.23 -1.00 0.98 0.00 0.22 0.92

11 -59.84 -13.69 0.63 -9.03 -1.00 0.50 0.00 0.13 0.71

12 -89.86 -43.56 0.37 17.66 -1.00 0.98 0.00 0.00 0.98

13 31.17 -4.65 0.66 -4.38 1.00 0.69 0.00 0.17 0.89

14 -92.06 -48.54 0.45 18.30 -1.00 0.98 0.00 0.00 0.98

15 -87.04 -45.34 0.51 11.13 -1.00 0.99 0.00 0.25 0.90

16 -82.94 -32.72 0.39 19.32 -1.00 0.98 0.00 0.00 0.98

17 -82.16 -37.33 0.65 19.28 -1.00 0.99 0.00 0.00 0.99

18 -73.46 -26.82 0.62 5.35 -1.00 0.99 0.00 0.53 0.94

19 31.34 -4.11 1.02 7.19 1.00 0.37 0.00 0.00 0.57

20 30.06 -4.79 0.89 8.60 1.00 0.43 0.00 0.00 0.42

21 29.90 -4.24 1.00 -6.17 1.00 0.65 0.00 0.21 0.56

22 -53.71 -10.64 1.05 -2.12 0.00 0.26 0.00 0.00 0.46

23 -62.41 -16.49 1.03 15.34 0.00 0.99 0.00 0.00 0.99

24 -52.88 -43.35 2.63 -2.23 -1.00 0.31 0.00 0.08 0.31

-48.95 -25.41 0.82 8.46 -0.38 0.80 0.00 0.10 0.77

45.14 14.59 0.45 8.46 0.86 0.27 0.00 0.13 0.28

Mean

Std. Dev.

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3

Added 

impulses to 

tests 1-3

Barge length = 46% of width Percentage of time that 

No 

Translational 

Velocity

x translational 

velocity 

varied

z translational 

velocity 

varied
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It is good to point out that the balancing control was only partially learned by both 

controllers. Certain states performed much better than others, and the controllers did 

not display proper control for high values of 𝜃. 

Training took place with varying initial conditions to include a certain degree of 

randomness and enable the models to train in different states, avoiding both local 

optima and overfitting. Although this is generally a good strategy, states closer to the 

barge were visited less often due to multiple failures in earlier states. In both models, 

the rocket could be observed to correctly control its upright position whilst 

approaching the barge but failed to throttle down for a smooth landing. Since 𝐹𝐸 was 

used consistently, the rocket mass continued to decrease, causing the rocket to 

accelerate upward due to increased fuel burn. 

In tests 2-5 and 22-24 of the high action discretization model, the rocket descended 

in a controlled manner using 𝜑 more than 𝐹𝑆 to balance, but failed to throttle down. 

Moreover, it was evident that the controller learned how to adjust for a negative 𝜃 

but did not learn the opposite controls. Since learning took place with initializations 

close to coordinates (0.5, 1), the controller also failed to learn how to navigate from 

(0.3, 1), especially with 𝜃 ≠ 0. 

The low action discretization was expected to learn simple controls quicker, and this 

is somewhat evident from the higher number of successful landings. However, as 

mentioned before, the finer controls of the high action discretization helped the 

second controller to progress steadily and achieve higher rewards. Even though most 

tests failed due to over-throttling, the low fuel consumption is worth noting. 

From the points above, the following observations and comments can be made on 

function approximation in RL: 

• Different initial conditions must be used and randomized to prevent the 

model from overfitting to certain states. 

• The state passed to the model can be filled with information, but features 

elements will dominate over others during learning, causing certain weights 

to have higher values than others. 

• Higher discretization led to more stable learning in this case. 

• Lowering α from 0.01 to 0.001 and initializing ε (random action probability) 

to 0.01 instead of 0.1 had a positive effect on learning, achieving higher 

rewards for the same episode as well as resulting in more stable learning. 

These observations agree with what was expected. 

• Convergence is not guaranteed, and divergence will sometimes happen if 

too many random variables are introduced. 

• The control of the rocket cannot be tuned directly, and this is another 

disadvantage when compared to classical control algorithms. One solution 

to this problem is to introduce the concept of options, where instead of 

giving a reward at the end of an episode, a reward is also given when the 

rocket reaches “milestones” during an episode. This forces the rocket to 
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navigate its way to certain positions or pick certain controls consistently. 

The concept of options was not introduced in these tests to keep the reward 

comparable. 

• Introducing the concept of eligibility traces [52] makes learning faster by 

propagating the reward to not just the current state, but also previous states. 

This is similar to introducing artificial memory in a model. 

• Discretizing the action space for complex continuous control problems is not 

feasible or scalable. 

Note that introducing a value of 𝐹𝐸 < 0.5 in the actions solves the problem of the 

rocket accelerating upward after coming close to landing. Intuitively, this cannot 

happen with the PID, since it follows intuitive and predictable control laws. Figure 

27 shows the different trajectories for a few tests corresponding to the results in Table 

7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

No control learnt 

Good control but 

over-throttling 

Successful Landing 

Figure 27 Trajectories for different tests of the low action discretization model. (0, 0) represents the 

landing target. 
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5.7 DDPG Results 
 

The DDPG model is a significant improvement from the discretized function 

approximation models as well as MPC. It allows a control problem to be tackled 

directly without compromising action accuracy, whilst still learning optimal control. 

This sub-section details how the networks were developed and their corresponding 

training results as well as evaluation results for the 24 tests. 

5.7.1 Models 
 

Three different models were trained with the same hyper parameters but different 

input or network layers; 

1. Normalized 6-state input 𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = [𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇] 

• This involved executing a simulation before actual learning or 

testing commenced, to sample 10000 values for each state element. 

This was then used to normalize each state during execution by 

removing the mean and scaling 𝑠 to have unit variance. 

• This model was trained using a maximum of 500 steps per episode. 

This was done to force the network to land the rocket quickly but in 

a controlled manner. 

 

2. Unnormalized 14-state input: 

𝑠 = [ 𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇, 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑚𝑎𝑠𝑠,… 

… 𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡 𝑏𝑎𝑟𝑔𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 (2), 𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡 𝑏𝑎𝑟𝑔𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 (2), … 

… 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(2)] 

• The latter coordinates were used in case the barge was moved. The fuel 

consumption as well as changing mass allow the network to model even 

𝑚̇, a state which was ignored in all previous models. 

• The number of steps was not limited during training. 

 

3. Same as (2) but implemented Batch Normalization across layers as 

suggested by Lillicrap et al. [43]. 

Each model required two feed forward neural networks together with two copies of 

those networks as described in Section 4.5.1, all built using Tensorflow 1.2.0. Note 

that the networks are not restricted to be feed-forward, in fact, a Recurrent Neural 

Network (RNN) is worth exploring and is listed in the improvements. 

Each actor and critic network consisted of 3 layers; one 400 neuron layer, one 300 

neuron layer and the final output equivalent to the required dimension number, 3 for 

the actor and 1 for the critic. The 𝑟𝑒𝑙𝑢 activation function was used in the first layer, 

followed by the sigmoid function and finally 𝑡𝑎𝑛ℎ in the case of the actor. The output 
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of the critic was not passed through an activation function since it is meant to 

represent 𝑄(𝑠, 𝑎|𝜃). 

The 𝑟𝑒𝑙𝑢 function allows for linear parts to be captured, whereas the sigmoid 

function captures non-linearities. The final 𝑡𝑎𝑛ℎ output limits the output to be 

between 1 and -1, serving as a convenient limiter. 

5.7.2 Learning 
 

Preliminary tests showed that diversifying activation functions allowed the network 

to learn faster, whereas using a lower number of neurons did not have any noticeable 

effect unless a number lower than approximately 5×(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑎𝑡𝑒𝑠) 

was used. The Adaptive Moment Estimation (Adam) was used as a gradient 

optimizer required for backpropagation of the error. 

The learning rate was varied starting from a relatively high value of 0.01 for both 

networks and decreasing by an order of magnitude if training seemed to express 

divergence properties. Eventually, the actor’s learning rate was held at 0.0001, 

whereas the critic’s was 0.001. Low learning rates allow for stable but slower 

learning, and this proved to be the case. 𝜏, the proportion with which weights of 

copied networks were moved towards the actual networks was kept at 0.001. 

The above justifications allowed the focus to shift on investigating the effects that 

different inputs, as well as normalization, have on control. All simulation parameters 

were kept the same as the Q-learning cases, including initial conditions, barge length, 

and randomness. 

The first two models proved to be very effective and learning took place as expected, 

as shown in Figure 28. However, the third model utilising Batch Normalisation 

Figure 28 Learning curves for the two DDPG models. 
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slowed down learning significantly, even when higher learning rates were used. 

Batch Normalisation layers did not seem to benefit the networks in any way, on the 

contrary, performance degraded. To this end, only the results of the first two 

networks are presented. 

Learning of the first two networks shown in Figure 28 was much quicker and 

smoother than anticipated, especially when compared to the function approximation 

models. After just 50 episodes, less than 10 minutes of training time, both DDPG 

models showed signs of convergence, surpassing the numerical results of the 

classical PID controller. Fast learning can be attributed back to the Replay Buffer as 

well as separation of networks. 

Consider the results shown in Table 9 and Table 10. The following aspects stand out; 

• Relatively low fuel consumption across almost all tests; 

• Successful landing consistency; 

• Relatively low use of 𝐹𝐸; 

• Use of other actions when required; 

• |𝜃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < 3𝑜| across more than 90% of tests; 

• Best numerical values for Final Cost across all models as well as Average 

Total Reward for the first model.  

Interestingly, both models learn very well as is evident from Figure 28, however, 

they also perform quite differently. Model 2 learned to use 𝐹𝐸 more often (outputting 

higher values to make 𝑡𝑎𝑛ℎ(𝑓𝑖𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟) > 0) whilst still achieving lower fuel 

consumption. On top of this, even though the number of successful landings of model 

2 was not as much as that of model 1 or the PID, the Final Cost and Total Reward 

were higher where it was successful. This suggests that model 2 learnt specific 

controls quite well for different states, increasing the final efficiency of the 

controller. Compared to the function approximation models, the DDPG networks did 

not settle at a local optimum and converged successfully for the states in which the 

networks were trained in. 

Even though the use of normalization and 6 states proved to be sufficient in model 

1, it is clear that adding additional fuel, mass, and positioning information helps the 

controller converge to higher efficiency. Manual normalization still proved to be 

beneficial, even though random state samples were taken before training and were 

never updated. 

Batch Normalization was thought to be an improvement over the manual 

normalization since it automatically removes any bias from inputs to layers, but this 

was not the case. An improvement over manual normalization could, therefore, be 

to update the sample statistics and include the full 14 states. 

Note that the barge and landing coordinates did not change in the tests, however, 

their inclusion in model 2 makes it more robust against disturbances associated with 

the barge. 
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# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 25.76 -6.32 1.67 -0.37 1.00 0.34 0.05 0.04 0.38

2 26.25 -5.91 1.62 -0.03 1.00 0.42 0.14 0.01 0.46

3 27.22 -5.60 1.84 -0.36 1.00 0.47 0.14 0.06 0.51

4 27.37 -5.53 1.85 -0.22 1.00 0.49 0.14 0.05 0.52

5 26.80 -5.80 1.85 -1.02 1.00 0.40 0.11 0.07 0.38

6 25.13 -6.14 1.63 -0.17 1.00 0.45 0.10 0.11 0.45

7 -8.39 -22.00 0.59 3.87 1.00 0.69 0.81 0.09 0.92

8 24.55 -6.36 1.79 -0.20 1.00 0.47 0.14 0.17 0.45

9 24.83 -6.06 2.37 -4.98 1.00 0.42 0.17 0.03 0.43

10 25.79 -5.94 2.16 -0.72 1.00 0.43 0.16 0.02 0.44

11 -10.73 -13.87 1.47 -0.42 -1.00 0.91 0.22 0.41 0.68

12 -21.74 -36.34 0.45 4.76 1.00 0.71 0.78 0.03 0.96

13 -39.75 -35.96 1.65 -5.28 -1.00 0.99 0.50 0.36 0.85

14 24.44 -6.72 1.28 -2.59 1.00 0.45 0.46 0.00 0.66

15 26.37 -5.50 1.08 -1.20 1.00 0.32 0.36 0.00 0.59

16 26.26 -5.43 1.42 0.87 1.00 0.32 0.16 0.01 0.38

17 26.15 -6.03 2.18 0.04 1.00 0.43 0.14 0.03 0.46

18 25.83 -6.33 1.76 -2.53 1.00 0.48 0.06 0.15 0.52

19 25.94 -6.04 1.67 -0.14 1.00 0.41 0.13 0.03 0.42

20 26.21 -6.23 1.67 -0.03 1.00 0.34 0.05 0.03 0.37

21 25.70 -6.39 1.70 -0.49 1.00 0.34 0.03 0.05 0.35

22 26.16 -6.06 1.63 0.22 1.00 0.41 0.12 0.02 0.39

23 25.61 -6.06 1.68 0.03 1.00 0.38 0.13 0.02 0.40

24 25.50 -6.16 1.66 -0.39 1.00 0.32 0.10 0.03 0.29

18.22 -9.53 1.61 -0.47 0.83 0.48 0.22 0.08 0.51

17.90 8.75 0.42 2.07 0.55 0.17 0.21 0.10 0.18

Average

Std. Dev.

x translational 

velocity 

varied

z translational 

velocity 

varied

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3

Added 

impulses to 

tests 1-3

Barge length = 46% of width Percentage of time that 

No 

Translational 

Velocity

Table 9 DDPG Model 1 numerical test results 

 

Table 10 DDPG Model 2 numerical test results 

 
# Test Type Total Reward Final Cost Fuel Consumed Average θ Landed Fe Fl Fr |psi| > 3

1 24.88 -3.49 1.05 -0.26 1.00 0.15 0.00 0.04 0.11

2 24.44 -3.57 1.10 0.16 1.00 0.15 0.02 0.02 0.12

3 -10.68 -14.33 1.16 0.27 0.00 0.90 0.00 0.09 0.63

4 -10.91 -14.38 1.17 0.44 0.00 0.90 0.07 0.11 0.68

5 -9.54 -13.19 1.20 -0.08 0.00 0.89 0.10 0.24 0.68

6 21.45 -4.74 1.06 0.05 1.00 0.15 0.00 0.08 0.11

7 29.79 -5.45 0.74 2.74 1.00 0.63 0.31 0.11 0.64

8 28.66 -6.50 1.19 -0.17 1.00 0.82 0.00 0.40 0.64

9 -12.73 -19.24 0.91 2.67 -1.00 0.91 0.60 0.18 0.80

10 -8.74 -16.91 1.10 0.34 -1.00 0.99 0.35 0.05 0.77

11 31.71 -4.48 1.09 0.47 1.00 0.79 0.00 0.50 0.59

12 28.06 -6.16 0.82 2.10 1.00 0.67 0.26 0.12 0.59

13 29.15 -6.41 1.11 -0.21 1.00 0.77 0.00 0.50 0.60

14 -13.27 -19.69 0.99 2.29 -1.00 0.99 0.59 0.12 0.76

15 -10.00 -18.21 1.01 0.28 -1.00 0.99 0.38 0.10 0.78

16 29.88 -3.33 0.72 3.63 1.00 0.49 0.26 0.27 0.55

17 -10.39 -21.87 0.74 3.28 0.00 0.81 0.45 0.43 0.97

18 18.58 -5.92 1.11 1.66 1.00 0.13 0.04 0.08 0.13

19 26.19 -3.15 1.05 0.09 1.00 0.14 0.00 0.01 0.10

20 24.67 -3.15 1.10 0.16 1.00 0.15 0.02 0.05 0.13

21 32.58 -4.02 1.10 -0.34 1.00 0.80 0.09 0.35 0.65

22 32.49 -3.26 1.07 -0.23 1.00 0.68 0.00 0.03 0.50

23 34.27 -3.67 1.11 0.41 1.00 0.81 0.10 0.09 0.61

24 33.26 -3.82 1.09 -0.23 1.00 0.81 0.12 0.25 0.67

15.16 -8.70 1.03 0.81 0.50 0.65 0.16 0.18 0.53

18.70 6.33 0.14 1.23 0.76 0.31 0.19 0.15 0.26

Barge length = 46% of width Percentage of time that 

Std. Dev.

No 

Translational 

Velocity

x translational 

velocity 

varied

z translational 

velocity 

varied

Initializations 

with higher 

theta

Added step 

forces to tests 

1-3

Added 

impulses to 

tests 1-3

Average
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5.7.3 Trajectory Comparison between Models 1 and 2 
 

Consider the trajectories in Figure 29 shown for both DDPG models. The chosen 

tests will also serve as a comparison with the PID controller and cover different tests. 

The trajectories bring out some very interesting distinctions in the type of control 

that the models learned. 

Starting from Test 2, the initial trajectories were the same, suggesting that some 

similarities do exist between the networks. However, model 2 made use of large 

values of 𝜑 quite sparingly, and 𝐹𝐸 only needed to be used 15% of the time, even for 

a smooth landing. The low final cost reflects such a landing, as well as its accuracy. 

So why did the networks learn different things in certain states? Recall that the 

actor’s aim is to output an action given a state and the given weights, and a single 

weight change affects multiple states. Therefore, even initializing the same network 

with different weights will lead to slightly different behaviours. Moreover, the inputs 

were different, leading to different converged solutions. 

In Test 8, model 1 overshot the target but still landed successfully, exhibiting low 𝑥̇. 

In this case, the second model made more use of 𝐹𝐸 and 𝜑 and landed with 

approximately the same accuracy but on the opposite side of the barge. Considering 

their control, model 2 is once again preferred due to a more stable trajectory. 

Together with Test 18, Test 17 suggests that model 2 requires more training when it 

comes to initializing the rocket at different 𝑥 coordinates, whereas model 1 should 

decrease its over-control that causes overshoots. Perhaps the most interesting is Test 

23, where an impulse response was applied. Clearly, the impulse affected model 1 

more than model 2, however, it still managed to recover soon after, following the 

Figure 29 Trajectory comparison between the two DDPG models for Tests 2, 8, 17 and 23 
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trajectory learned in Test 2. Impressively, model 2 remained almost unaffected by 

the disturbance, suggesting better disturbance rejection properties. 

In summary; 

• Both model 1 and model 2 learned how to control the rocket in a stable 

manner similar to the PID. However, some states required more training.  

• Both models exhibited rough landings, having higher 𝑧̇ on touchdown. This 

can easily be amended by giving a reward to the networks for low values of 

𝑧̇ when close to the barge. 

• Model 1 learned how to navigate much better than model 2, however, the 

controller tended to lower 𝐹𝐸 when close to the landing barge, leading to a 

rougher landing. 

• Model 2 seemed to ignore the target when the simulation was started at 𝑥 =

0.3. This is because the model was not trained on enough episodes with 𝑥 ≠

0. The control capability of model 2 surpasses both the PID and model 1. 

• Given an infinite amount of fuel, both can hover indefinitely and robustly, 

surpassing the PIDs capability. 

5.8 Section Conclusion 
 

This chapter was concerned with the evaluation of 4 different controllers proposed 

in Section 4; PID, MPC, Q-Learning, and DDPG. The testing conditions, as well as 

evaluation metrics, were first laid out. The chosen tests represent a variety of 

conditions that test different aspects of each controller, such as the ability to move 

whilst still staying upright, the capacity to land and fuel consumption, among others. 

 

Results showed that the PID performed quite well, exhibiting soft and constant 

landings. However, fuel consumption and the inability to recover from large values 

of 𝜃 are two major defects. The latter is evident from Test 17 as shown in Figure 30. 

The fuel consumption problem can be easily adjusted through either 𝐾𝐷 of the PID 

controlling 𝐹𝐸, or by offsetting the 𝑧 target. Nonetheless, in two dimensions, the PID 

sufficed to be a robust controller. 

 

The PID disregards the state of the system, and only concerns itself with a single 

output. When multiple SISO systems are put together, controls can conflict. To 

handle MIMO systems, MPC was introduced. However, results for MPC proved to 

be inconsistent and divergent, with the controller exhibiting good control at times 

but very bad in others. This proved to be the case for different initial conditions as 

well as different hyper parameters. Changing the cost matrices did change the 

system’s behaviour, but the controller failed to control 𝜑 in the intended manner. 

The time and control horizons had a drastic effect on the final reward, and 

surprisingly, increasing the control horizon improved the results. Nonetheless, the 

surprising failure of MPC to solve non-linearities whilst preserving control served 

as a stepping stone towards exploring AI techniques. 
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Function approximation RL was discussed in Section 4.4, where Q-Learning was 

presented as an episodic alternative to learning control. Two controllers were built, 

one having low action discretization, whilst the other having higher action 

discretization and more state information. These controllers were designed to 

highlight the limitations of the tabular approach to tackle continuous state-action 

problems. Results showed that neither controller achieved precise, consistent 

landings with clear executed control. 

 

To tackle the control problem in its entirety, the DDPG algorithm was implemented. 

The implementation was evaluated with the normalized and unnormalized state 

cases. Batch Normalization was also used, but surprisingly the networks showed 

poor performance, possibly due to very slow learning. Although numerical results 

for model 1 and model 2 were similar, the unnormalized case (model 2) provided 

softer landings, more control and in some situations, better trajectory choices. 

However, the first model learned how to navigate from 𝑥 ≠ 0 better than the second. 

Figure 31 shows different successful and unsuccessful landings achieved by model 

2. 

 

 

 

 

 

Figure 30 Trajectory comparison between the DDPG model and the PID controller for Tests 2, 8 and 

17. Together, these tests show a variety of conditions and highlight the differences between 

controllers. 
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Compared to the PID controller, the DDPG technique proved to be very efficient, 

for instance, the trajectories in Figure 30 show why the DDPG controllers obtained 

lower fuel consumption. The ability of the DDPG to learn such complex control 

simply through rewards frees the control designer from explicitly defining the system 

and requiring the full model. This makes DDPG viable to not just the rocket landing 

problem, but all continuous control problems, such as the inverted pendulum. The 

fact that both DDPG models achieved proper control suggests that normalization 

may only be needed where states have very wide and different ranges. Moreover, the 

state should include all critical information related to the dynamics of the model. 

 

Despite so many advantages, RL still has its pitfalls. In this case, rewards were 

explicitly defined, but the input transient responses were not. The response of certain 

inputs might need to be controlled as shown in the PID root locus design, meeting 

certain frequency and time criteria. Allocating rewards to control such transients 

becomes ambiguous and is not scalable. Moreover, the reward is assumed to be 

provided by the environment, but certain problems might involve having an 

unobservable reward. Partially observable problems can be defined to solve these 

problems, but their discussion is out of the scope of this thesis. 

 

The simulation and results are briefly summarized in a short video by following this 

link: https://goo.gl/tmRwK4. All code associated with the simulation was uploaded 

to GitHub and can be found at: https://goo.gl/GJpPAh. 

 

Figure 31 Different landings for the unnormalized state DDPG. 

https://goo.gl/tmRwK4
https://goo.gl/GJpPAh
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6 Improvements and Future Work 
 

Continuous control problems are open ended, as such improvements and suggestions 

will be limited to methods that build on the implemented controllers. The PID serves 

as a sufficient benchmark and no further development is needed on that front unless 

it’s critical to the subject of study. 

• In this thesis, the LQR was simply used as a foundation for optimization 

theory. However, its inability to include constraints led to MPC. On this 

note, the Riccati equation used for the normal LQR method can be re-derived 

with the included constraints, giving rise to constrained LQR with integral 

action. Even though theoretically MPC indirectly includes LQR in its 

implementation, LQR’s algebraic solution makes it an attractive solution 

over the optimization counterpart. Therefore, several constrained LQRs can 

be used in different conditions to avoid the use of an optimizer. 

 

• Optimal control is a very wide field having many different forms. One such 

branch lies in the use of different optimizers to solve different problems. 

Different optimizers differ in the algorithm they use to converge to a solution 

and their use must be limited to solving that type of problem. Using a convex 

optimizer to try to solve a non-convex problem leads to instability and 

divergence. As such, more research should be done on the type of optimizer 

used. The objective function and the linearized problem were tackled in the 

correct way, but redefining the problem in a more sophisticated optimization 

framework can possibly yield much better results. Moreover, hybrid 

controllers that split the optimization problem into multiple steps should be 

explored as an improvement over a single MPC controller. 

 

• Given the effectiveness of DDPG and its limitations, more continuous action 

controllers should be explored. Unlike feedforward NNs, RNNs can 

consider a sequence of inputs, replicating artificial memory. Such a network 

might prove useful in both actor and critic networks, especially since the 

nature of the problem is sequential. 

Besides this, very recent studies on evolutionary networks (ENs) have 

prompted renewed interest in its applicability to control algorithms [53]. 

ENs serve as black box optimizers that replace the RL framework such as 

Q-Learning. The objective is still to maximize a fitness function, however, 

several simulations are executed in parallel and weights are adjusted by a 

gradient function weighted by the rewards obtained in those simulations. 

Thus, small incremental changes are made to the weights. Although 

convergence is not guaranteed, more advanced evolutionary strategies, such 

as the Covariance Matrix Adaptation [54], also provide an alternative to non-

linear optimization. 
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7 Conclusion 
 

This multi-disciplinary project started with developing a simulation using a physics 

engine in Python 3.5 to tackle the non-linear problem of VTOL of a rocket using a 

vectorised nozzle. Vectorised nozzles provide much more control over their static 

counterparts and have enabled the reusability of first stage rockets, saving millions 

of dollars in material costs. 

 

The control problem was first presented as a second order differential equation 

having 6 features; 𝑠 = [𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇]. These fully captured the dynamics of the 

simulation, with the exception of a few variables, such as wind drag and change in 

mass. The simulation was built using Box2D with a combination of basic shapes 

held together by joints. The rocket was modelled after SpaceX’s Falcon 9, and 

attention was given to the accuracy of dimensions and variables, such as mass and 

scale. 

 

The goal of the project was to design a robust controller for vertical rocket landing. 

To do so, controllers from different domains were reviewed and 4 controllers were 

implemented. The classical control approach involved 3 PID controllers tuned 

independently. These were designed by assuming independence among variables 

and treating each output as a SISO system, having one input controlling one output. 

In reality, this isn’t true, as coupling exists between multiple inputs and multiple 

outputs. Root locus was used to design a single PID in the time domain, with 

subsequent PIDs copied, scaled and adjusted empirically until suitable control was 

achieved. Moreover, other states were then introduced as feedback in each PID to 

try to eliminate any decoupling between states. 

 

The PID could be used because the problem is 2-dimensional, simplifying the 

kinematics significantly. Had the problem been tackled in 3-dimensions, a hybrid 

controller would have been used as a benchmark, having a PID control a subset of 

controls, and an MPC controlling others. Nonetheless, the decoupled PID proved to 

be robust for low angles of 𝜃 and small position offsets. It had the softest landings 

but highest fuel consumption. However, thanks to the intuitiveness of the algorithm, 

this can be very easily adjusted. This is in contrast with most AI algorithms, where 

an entire model needs to be retrained with every change that occurs. 

 

Although classical control is still widely used in the industry, optimal control theory 

has been successfully adopted due to the increased computational capability of 

embedded systems. To this end, MPC was explored and a controller was 

implemented using the CVX framework. 

 

This domain minimizes a utility function given a number of constraints. Constraints 

include input constraints which help keep the inputs under thresholds. The rest of the 

constraints involve replicating the state space model in the form 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡. 
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With a prediction horizon of 𝑇ℎ, we would effectively be trying to predict future 

states and inputs. This is very advantageous over classical control, since 

consideration is given to future states as well as current states. Although theoretically 

sound, in practice, MPC experienced convergence issues. This can be due to 

linearization and non-convexity. Although 𝐹𝑠 was being controlled as intended, 𝜑 

wasn’t. 

 

Function approximation Q-Learning was used as a bridge between optimal control 

theory and RL, two fields which derive from the same background. Two controllers 

were implemented by discretizing the action-space and approximating the state as an 

algebraic sum of features, each having learnable weights. Controllers managed to 

exhibit good control in some states, but training led to local optima. Consequently, 

testing showed that on most conditions, the controllers failed simply because the 

combination of limited inputs and multiple states was not enough to sustain control. 

 

The final significant contribution made in the thesis was the use of DDPG and the 

framework required for it. DDPG solves the discrete action space limitation of Q-

Learning controllers as well as the state approximation by using two separate NNs 

to implement the actor-critic architecture. NNs are capable of emulating a state on a 

continuous level. Although somewhat complex, DDPG managed to obtain the 

highest efficiency and best overall control, utilising 𝜑 and 𝐹𝑆 in a much better manner 

than the MPC or Q-Learning. The use of RNNs was proposed as a replacement over 

feedforward NNs. Theoretically, these would model the sequential inputs, taking 

into consideration past states. 

 

In summary, all objectives of the thesis were successfully achieved; 

• A new, easy-to-use rocket landing simulation framework was developed and 

contributed as Open Source software on OpenAI. 

o Any new controller can be tested with the use of an Application 

Programming Interface. 

o A new controller can be evaluated against any developed controller 

without any changes to the code. 

o Changes to the shape of the rocket, dynamics, environment or even 

simulation objectives can be easily done. 

• The control framework was laid out for both classical control and optimal 

control, with any controller capable of being benchmarked. 

• RL framework was successfully implemented using two controllers, serving 

as a stepping stone for more advanced algorithms. 

• Deep learning framework was successfully implemented and contrasted 

with traditional control. 
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